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Abstract. In this paper, we present an end-to-end learning framework
for predicting task-driven visual saliency on webpages. Given a webpage,
we propose a convolutional neural network to predict where people look
at it under different task conditions. Inspired by the observation that
given a specific task, human attention is strongly correlated with certain
semantic components on a webpage (e.g., images, buttons and input
boxes), our network explicitly disentangles saliency prediction into two
independent sub-tasks: task-specific attention shift prediction and task-
free saliency prediction. The task-specific branch estimates task-driven
attention shift over a webpage from its semantic components, while the
task-free branch infers visual saliency induced by visual features of the
webpage. The outputs of the two branches are combined to produce
the final prediction. Such a task decomposition framework allows us to
efficiently learn our model from a small-scale task-driven saliency dataset
with sparse labels (captured under a single task condition). Experimental
results show that our method outperforms the baselines and prior works,
achieving state-of-the-art performance on a newly collected benchmark
dataset for task-driven webpage saliency detection.
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1 Introduction

Webpages are a ubiquitous and important medium for information communi-
cation on the Internet. Webpages are essentially task-driven, created by web
designers with particular purposes in mind (e.g., higher click through and con-
version rates). When browsing a website, visitors often have tasks to complete,
such as finding the information that they need quickly or signing up to an online
service. Hence, being able to predict where people will look at a webpage under
different task-driven conditions can be practically useful for optimizing web de-
sign [5] and informing algorithms for webpage generation [24]. Although some
recent works attempt to model human attention on webpages [27,28], or graphic
designs [4], they only consider the free-viewing condition.

In this paper, we are interested in predicting task-driven webpage saliency.
When visiting a webpage, people often gravitate their attention to different
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(c) Form filling (d) Shopping(b) Information browsing(a) Input webpage

Fig. 1: Given an input webpage (a), our model can predict a different saliency map
under a different task, e.g., information browsing (b), form filling (c) and shopping
(d).

places in different tasks. Hence, given a webpage, we aim to predict the visual
saliency under multiple tasks (Fig. 1). There are two main obstacles for this prob-
lem: 1) Lack of powerful features for webpage saliency prediction: while existing
works have investigated various features for natural images, effective features for
graphic designs are ill-studied; 2) Scarcity of data: to our knowledge, the state-
of-the art task-driven webpage saliency dataset [24] only contains hundreds of
examples, and collecting task-driven saliency data is expensive.

To tackle these challenges, we propose a novel convolutional network ar-
chitecture, which takes as input a webpage and a task label, and predicts the
saliency under the task. Our key observation is that human attention behaviors
on webpages under a particular task are mainly driven by the configurations
and arrangement of semantic components (e.g., buttons, images and text). For
example, in order to register an email account, people tend to first recognize the
key components on a webpage and then move their attention towards the sign-up
form region composed of several input boxes and a button. Likewise, for online
shopping, people are more likely to look at product images accompanied by text
descriptions. Inspired by this, we propose to disentangle task-driven saliency pre-
diction into two sub-tasks: task-specific attention shift prediction and task-free
saliency prediction. The task-specific branch estimates task-driven global atten-
tion shift over the webpage from its semantic components, while the task-free
branch predicts visual saliency independent of the task. Our network models
the two sub-tasks in an unified architecture and fuses the outputs to make final
prediction. We argue that such a task decomposition framework allows efficient
network training using only a small-scale task-driven saliency dataset captured
under the single task condition, i.e., each webpage in the dataset contains the
saliency captured on a single task.

To train our model effectively, we first pre-train the task-free subnet on a
large-scale natural image saliency dataset and task-specific subnet on synthetic
data generated by our proposed data synthesis approach. We then train our
network end-to-end on a small-scale task-driven webpage saliency dataset. To
evaluate our model, we create a benchmark dataset of 200 webpages, each with
visual saliency maps captured under one or more tasks. Our results on this
dataset show that our model outperforms the baselines and prior works. Our
main contributions are:
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– We address webpage saliency prediction under the multi-task condition.
– We propose a learning framework that disentangles the task-driven webpage

saliency problem into the task-specific and task-free sub-tasks, which enables
the network to be efficiently trained from a small-scale task-driven saliency
dataset with sparse annotations.

– We construct a new benchmark dataset for the evaluation of webpage saliency
prediction under the multi-task condition.

2 Related Work

2.1 Saliency Detection on Natural Images

Saliency detection on natural images is an active research topic in computer
vision. The early works mainly explore various hand-crafted features and fea-
ture fusing strategies [1]. Recent works have made significant performance im-
provements, due to the strong representation power of CNN features. Some
works [17, 18, 40] produce high-quality saliency maps using different CNNs to
extract multi-scale features. Pan et al. [23] propose shallow and deep CNNs
for saliency prediction. Wang et al. [32] use a multi-stage structure to handle
local and global saliency. More recent works [10, 16, 19, 31] apply fully convolu-
tional networks for saliency detection, in order to reduce the number of parame-
ters of the networks and preserve spatial information of internal representations
throughout the networks. To get more accurate results, more complex architec-
tures, such as recurrent neural networks [15, 20, 22, 33], hybrid upsampling [38],
multi-scale refinement [6], and skip connection [7,9,34]. However, all these works
focus on natural images. In contrast, our work focuses on predicting saliency on
webpages, which are very different from natural images in visual, structural and
semantic characteristics [27].

2.2 Saliency Detection on Webpages

Webpages have well-designed configurations and layouts of semantic compo-
nents, aiming to direct viewer attention effectively. To address webpage saliency,
Shen et al. [28] propose a saliency model based on hand-crafted features (face,
positional bias, etc.) to predict eye fixations on webpages. They later extend [28]
to leverage the high-level features from CNNs [27], in addition to the low-level
features. However, all these methods assume a free-viewing condition, without
considering the effect of tasks upon saliency prediction. Recently, Bylinskii et
al. [4] propose deep learning based models to predict saliency for data visualiza-
tion and graphics. They train two separate networks for two types of designs.
However, our problem setting is quite different from theirs. Each of their models
is specific to a single task associated with their training data, without the ability
to control the task condition. In contrast, we aim for a unified, task-conditional
framework, where our model will output different saliency maps depending on
the given task label.
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2.3 Task-driven Visual Saliency

There are several works on analyzing or predicting visual saliency under task-
driven conditions. Some previous works [2,12,36] have shown that eye movements
are influenced by the given tasks. To predict human attention under a particular
task condition (e.g., searching an object in an image), an early work [21] pro-
poses a cognitive model. Recent works attempt to drive saliency prediction using
various high-level signals, such as example images [8] and image captions [35].
There is also a line of research on visualizing object-level saliency using image-
level supervision [25, 29, 37, 39, 41]. All of the above learning based models are
trained on large-scale datasets with dense labels, i.e., each image in the dataset
has the ground-truth for all the high-level signals. In contrast, as it is expensive
to collect the task-driven webpage saliency data, we especially design our net-
work architecture so that it can be trained efficiently on a small-scale dataset
with sparse annotations. Sparse annotations in our context means that each im-
age in our dataset only has ground-truth saliency for a single task, but our goal
is to predict saliency under the multiple tasks.

3 Approach

In this section, we describe the proposed approach for task-driven webpage
saliency prediction in details. First, we perform a data analysis to understand
the relationship between task-specific saliency and semantic components on web-
pages, which motivates the design of our network and inspires our data synthesis
approach. Second, we describe our proposed network that addresses the task-
specific and task-free sub-problems in a unified framework. Finally, we introduce
a task-driven data synthetic strategy for pre-training our task-specific subnet.

3.1 Task-driven Webpage Saliency Dataset

To train our model, we use a publicly available, state-of-the-art task-driven web-
page saliency dataset presented in [24]. This dataset contains 254 webpages, cov-
ering 6 common categories: email, file sharing, job searching, product promotion,
shopping and social networking. It was collected from an eye tracking experi-
ment, where for each webpage, the eye fixation data of multiple viewers under
both a single task condition and a free-viewing condition were recorded. Four
types of semantic components, input field, text, button and image for all
the webpages were annotated. To compute a saliency map for a webpage, they
aggregated the data gaze data from all the viewers and convolved the result with
a Gaussian filter, as in [13]. Note that the size of the dataset is small and we only
have saliency data of the webpages captured under the single task condition.

Task definition. In their data collection [24], two general tasks are defined: 1)
Comparison: viewers compared a pair of webpages and decided on which one
to take for a given purpose (e.g., which website to sign-up for a email service);
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Fig. 2: Accumulative saliency of each semantic component (row) under a specific task
(column). From left to right, each column represents the saliency distribution under
the Signing-up, Form filling, Information browsing, Shopping or Community joining
task. Warm colors represent high saliency. Better view in color.

2) Shopping: viewers were given a certain amount of cash and decided which
products to buy in a given shopping website. In our paper, we define 5 common
and more specific tasks according to the 6 webpage categories in their dataset:
Signing-up (email), Information browsing (product promotion), Form fill-
ing (file sharing, job searching), Shopping (shopping) and Community join-
ing (social networking). We use this task definition throughout the paper.

3.2 Data Analysis

Our hypothesis is that human attention on webpages under the task-driven con-
dition is related to the semantic components of webpages. In other words, with
different tasks, human attention may be biased towards different subsets of se-
mantic components, in order to complete their goals efficiently. Here, we explore
the relationship between task-driven saliency and semantic components by an-
alyzing the task-driven webpage saliency dataset in Sec. 3.1. Fig. 2 shows the
accumulative saliency on each semantic component under different tasks. We
can visually inspect some connections between tasks and semantic components.
For example, for “Information browsing”, the image component receives higher
saliency, while other semantic components have relatively lower saliency. Both
the input field and button components have higher saliency under “Form filling”,
relative to other tasks. For “Shopping”, both image and text components have
higher saliency, while the other two semantic components have quite low saliency.
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Table 1: Component saliency ratio for each semantic component (column) under each
task (row). The larger the value for a semantic component under a task is, the more
likely people look at the semantic component under the task, and vice versa. For each
task, we shade two salient semantic components as key components, which are used in
our task-driven data synthetic approach.

Task Input field Text Button Image

Signing-up 0.953 0.971 1.040 1.124
Form filling 1.681 0.979 1.254 0.572
Information browsing 1.725 0.946 0.804 1.033
Shopping 1.444 1.022 0.816 0.770
Community joining 0.895 0.898 1.156 1.186

To understand such a relationship quantitatively, for each semantic component c
under a task t, we define a within-task component saliency ratio, which measures
the average saliency of c under t compared with the average saliency of all the
semantic components under t:

SR(c, t) =
Sc,t

SAt
, (1)

In particular, Sc,t is formulated as: Sc,t =

∑nc,t

i=1 sc,t,i
nc,t

, where sc,t,i denotes

the saliency of the i-th instance of semantic component c (computed as the av-
erage saliency value of the pixels within the instance) under task t. nc,t denotes
the total number of instances of semantic component c under task t. SAt is for-

mulated as: SAt =

∑n
c=1

∑nc,t

i=1 sc,t,i∑n
c=1 nc,t

, where n denotes the number of semantic

components. Our component saliency ratio tells whether a semantic component
under a particular task is more salient (> 1), equally salient (= 1) or less salient
(< 1), as compared with the average saliency. We report the component saliency
ratios for all tasks and semantic components in Table 1. We find that, under
each task, some semantic components apparently have higher scores than oth-
ers. This means that people are more likely to look at the high-score semantic
components than the low-score ones under the task. For example, for “Form fill-
ing”, the scores for input and button components are high (1.681, 1.254), while
the scores for other semantic components are low (≤ 1), which is consistent with
our observation from the accumulative saliency maps above. Based on these com-
ponent saliency scores, for each task, we identify two semantic components with
higher scores as the key components (the shaded components in Table 1) that
people tend to focus on under the task. These key components are used to syn-
thesize task-driven saliency data for pre-training the task-specific subnet of our
network, as introduced in Section 3.5. It is worth noting that when selecting the
key components, we also avoid two tasks having exactly the same set of key com-
ponents, which may confuse the learning of our model. Hence, for “Signing-up”,
we select “Text” instead of “Button” to prevent “Signing-up” to have the same
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Fig. 3: Network architecture. Inputs to our model are a webpage image and a task label
(e.g., “Signing-up”). The webpage image is first fed to a shared encoder to extract
high-level features, which are used by two subnets for predicting task-specific human
attention bias and task-free visual saliency. The task-specific subnet takes as input the
task label along with a semantic segmentation map from a segmentation subnet, and
predicts the task-dependent attention shift (upper), while the task-free subnet predicts
the task-independent saliency (lower). The task-specific attention shift and task-free
saliency are combined to obtain the final saliency map under the input task.

set of key components as “Community joining”. The above analysis confirms our
assumption that human attention shift under a particular task is correlated with
and can thus be predicted from a subset of semantic components.

3.3 Network Architecture

Fig. 3 shows the architecture of our proposed network. A webpage image is
first fed into a shared encoder to extract high-level feature representation. The
shared encoder uses all the layers of the FCN [26] before the output layer. After
that, the network splits into two branches: the task-specific branch and task-free
branch. For the task-specific branch, we use a segmentation subnet (using the
output layer of the FCN [26]) to generate a semantic segmentation map from
the extracted feature representation. We then send a task label (e.g., “Signing-
up”) along with the semantic segmentation map to a task-specific subnet, which
outputs a task-specific attention shift map. For the task-free branch, we use
a task-free subnet to map the extracted feature representation to a task-free
saliency map. The task-specifc attention shift map and the task-free saliency
map are added to produce the final output. We also tried other fusion operations
e.g., multiplication, but found addition performs better.

Task-specific subnet: The task-specific subnet is used to model human attention
shift towards particular semantic components under the task-driven condition
(as validated in Section 3.2). To do this, we first obtain a semantic segmentation
map through a segmentation subnet. To account for segmentation uncertainty,
we directly take the output of the segmentation layer (probability distributions
over different semantic components) as the segmentation map, and then feed
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Fig. 4: Task-specific subnet. The filter sizes of the convolutional and deconvolutional
layers are labeled above the corresponding layers. The channel numbers and sizes of
the feature maps are also labeled nearby the feature maps.

it to the task-specific subnet to predict the attention shift among the semantic
components. Fig. 4 shows the detailed structure. The semantic segmentation
map is passed through a series of convolutional layers to get a lower-dimensional
segmentation representation. To encode the task label, we represent it using
one-of-K representation (K=5) and transform it into a semantic vector via a
task encoder with a stack of fully connected layers. The semantic vector is then
reshaped and duplicated multiple times, and concatenated with the segmentation
representation. The concatenated features are finally transformed by a stack of
deconvolutional layers to output a task-specific attention shift map.

Task-free subnet: The task-free subnet is used to model visual saliency, which is
task-independent and driven by visual contents of the input webpage. To simplify
our network, this subnet uses the output layer of the FCN [26] to directly output
a saliency map, which works well in our experiments. More complex layers can
be added, but at the cost of extra parameters.

Discussion: Our network architecture can be efficiently trained, even with small
amounts of training data, to produce reasonable saliency predictions given dif-
ferent tasks. This is because our framework has the task-specific branch to
model the task-related saliency shift from task-free saliency. In addition, the
task-specific subnet receives a semantic segmentation map, instead of the web-
page, as input. The complexity of the input space is greatly reduced, as only
several semantic classes need to be encoded. This makes it easier for the model
to discover consistent patterns and learn the mapping from a task label to the
corresponding attention shift.

3.4 Training

Due to the deep network architecture, directly training it end-to-end on our small
dataset is difficult. Thus, we propose a two-stage training strategy, where we first
pre-train each part separately and then fine-tune the entire network jointly. In
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(a) Real (b) Signing-up (Text-Image) (c) Form-filling (Input-Button)

(d) Info. browsing (Input-Image) (e) Shopping (Input-Text) (f) Comm. joining (Button-Image)

Fig. 5: Synthetic saliency data. (a) Saliency map from the webpage dataset [24]. (b)-
(f) Synthesized saliency maps from (a) for 5 different tasks. The corresponding key
components of each task are shown in braces.

particular, we first pre-train the task-free subnet on a large-scale natural image
saliency dataset, SALICON [11], and then fine-tune it on the webpage saliency
dataset [24]. It is trained by minimizing a L2 loss between the predicted and
ground-truth saliency, Lsal. For the segmentation subnet, we enforce a cross-
entry loss between the predicted and ground-truth semantic segmentation maps,
Lseg, and train it on the webpage saliency dataset with ground-truth semantic
annotations. Since the segmentation subnet and task-free subnet share the same
encoder, we thus jointly train them with a multi-task loss Lmulti,

Lmulti = Lsal + Lseg, (2)

The task-specific subnet is pre-trained from scratch on a synthetic task-driven
saliency dataset (as discussed below), with L2 loss between the predicted and
ground-truth attention maps. Finally, we train the entire model end-to-end using
L2 loss between the ground-truth and predicted saliency maps given a task label.
We have also tried several other loss functions, e.g., cross entropy loss and L1
loss, but found that they produced worse performances.

3.5 Task-driven Data Synthesis

Pre-training the task-specific subnet requires a lot of saliency data on webpages
under the multi-task condition, which is not available and expensive to collect.
To address this limitation, we propose a data synthesis approach to generate our
training dataset by leveraging the key semantic components for each task that we
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have identified in Section 3.2. Our data synthesis method works as follows. Given
a webpage in our dataset, we take its existing task-driven saliency map. For each
task of the five tasks, we only preserve the saliency of the saliency map on the
corresponding key components of the task, by zeroing out the saliency in other
regions. In this way, we generate 5 task-specific saliency maps for each webpage.
Fig. 5 shows an example of the synthesized saliency maps under different tasks.
With our data synthesis approach, we generate a dataset with dense annotations
(i.e., the saliency data under all tasks are available for all webpages), which is
sufficient for pre-training our task-specific subnet.

4 Implementation Details

The segmentation subnet and task-free subnet are based on the FCN [26], and
we adopt VGG-16 [30] for the shared encoder of the FCN. The parameters are
optimized by Adam optimizer [30], with a batch size of 20. During training, we
use different learning rates for different parts. For the task-specific and task-free
subnets, we set the initial learning rate to be 10−7, and divide it by 10 every
20 epochs. For the shared encoder, we start with a small initial learning rate
(10−10) and set it to be the same as that of the task-free subnet after 20 epochs.
We train our network for 100 epochs. The webpage images and their saliency
maps are resized to 224 × 224.

5 Experiments

In this section, we first introduce the evaluation dataset and evaluation metrics.
We then analyze our network architecture and training strategy in an ablation
study. Finally, we compare our method with prior methods.

5.1 Evaluation Dataset and Metrics

To evaluate our method, a task-driven webpage saliency dataset is required,
where each webpage has ground-truth saliency under different tasks. Unfortu-
nately, such dataset is not available. Thus, we construct a new evaluation dataset,
which includes 200 webpages collected from the Internet by us. The newly col-
lected webpages cover various categories (shopping, traveling, games and email).
Please refer to the supplemental for the statistics of the dataset. We assign each
webpage with one or more tasks selected from the 5 tasks, depending on the type
of webpage. In particular, 71 webpages are assigned 1 task, 120 webpages are
assigned 2 tasks and 9 webpages are assigned 3 tasks. To collect ground-truth
saliency on the webpages under different tasks, we performed an eye-tracking ex-
periment, following the experiment setup and methodologies in [24]. We recruited
24 participants for our experiment. In each viewing session, the participants are
first informed of the task, followed by one or two webpages to perform the given
task. For each webpage under each task, we collect eye-tracking data from 10 dif-
ferent participants, which are aggregated to produce the corresponding saliency
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Table 2: Results for the ablation study. The best results are highlighted in red, while
the second best are highlighted in blue.

Methods KL ↓ sAUC ↑ NSS ↑
No task-specific subnet 1.330 0.576 0.412
No task-free subnet 0.810 0.628 0.559
Separate encoders 1.013 0.629 0.566
Separate CNNs 1.235 0.605 0.498

No pre-train on synthetic data 10.428 0.553 0.337
Train only on synthetic data 2.722 0.614 0.552

Ours 0.883 0.645 0.622

map. To the best of our knowledge, the newly collected dataset, containing 200
webpages, is the largest task-driven webpage saliency evaluation dataset (vs. 30
webpages in [24, 28]). Similar to previous works [3, 12, 14], we use the following
metrics for evaluation: Kullback-Leibler divergence (KL), shuffled Area Under
Curve (sAUC) and Normalized Scanpath Saliency (NSS).

5.2 Ablation Study

To evaluate the design of our network architecture and training strategy, we
compare against the following baselines:
No task-specific subnet: We remove the task-specific subnet and concatenate
the semantic vector of the input task label with the output of the shared encoder
(before the task-free subnet) to predict task-driven saliency.
No task-free subnet: We convert our network to a one-branch architecture by
removing the task-free subnet.
Separate encoders: Rather than using a shared encoder for the segmenta-
tion and task-free subnets, we use two separate encoders (VGG-16) for the two
subnets.
Separate CNNs: We train 5 separate CNNs for each of the 5 tasks, and select
the corresponding CNN for a given task, to predict the saliency.
No pre-train on synthetic data: We directly train our model on the real-
world dataset, without pre-training the task-specific subnet on the synthetic
data.
Train only on synthetic data: Instead of training on our real-world dataset,
our model is only trained end-to-end on our synthetic data in Section 3.5.

Table 2 shows the results on our evaluation dataset. The results are ob-
tained by averaging the metrics across all the tasks. (Please refer to the sup-
plemental for the results on individual tasks.) Without the task-specific subnet,
the performance is the worst. This shows that having a one-branch network
to directly predict saliency from a webpage is not a promising solution and our
task-decomposition framework is essential for the task-driven saliency prediction
problem. The network without the task-free branch is slightly worse than our
proposed network. This implies that while task-driven human attention mainly
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Table 3: Performances of different saliency detection approaches on our evaluation

dataset. The best results are in red, and the second best are in blue.

KL ↓

Method
Sign-

up

Form

fill

Info.

brows.

Shopp-

ing

Comm.

joining
Average

Human 0 0 0 0 0 0

Grad-CAM [25] 5.527 5.253 4.126 4.094 5.843 4.973

VIMGD [4] 2.513 2.726 2.987 5.462 3.127 3.363

SALICON [10] 0.651 1.116 0.569 0.771 0.595 0.739

SalNet [23] 1.129 1.893 1.041 0.941 1.028 1.207

Ours 0.867 1.152 0.731 0.861 0.812 0.883

sAUC ↑

Method
Sign-

up

Form

fill

Info.

brows.

Shopp-

ing

Comm.

joining
Average

Human 0.750 0.734 0.727 0.745 0.736 0.738

Grad-CAM [25] 0.519 0.533 0.503 0.507 0.512 0.515

VIMGD [4] 0.596 0.576 0.577 0.540 0.583 0.576

SALICON [10] 0.612 0.598 0.604 0.601 0.607 0.605

SalNet [23] 0.638 0.603 0.629 0.631 0.636 0.627

Ours 0.654 0.633 0.644 0.642 0.652 0.645

NSS ↑

Method
Sign-

up

Form

fill

Info.

brows.

Shopp-

ing

Comm.

joining
Average

Human 0.804 0.823 0.699 0.739 0.773 0.768

Grad-CAM [25] 0.144 0.214 0.008 0.085 0.112 0.126

VIMGD [4] 0.534 0.449 0.465 0.293 0.488 0.447

SALICON [10] 0.605 0.526 0.550 0.497 0.573 0.550

SalNet [23] 0.609 0.480 0.550 0.585 0.604 0.5652

Ours 0.646 0.594 0.624 0.607 0.638 0.622

focuses on the semantic components of webpages that are important to the task,
it can still be attracted by other visual contents (e.g., color and contrast) as
in the free-viewing condition. Training task-specific models separately does not
perform well, as compared with our unified model. With only the task-specific
subnet (i.e., no task-free subnet), the model tends to put saliency mainly on
task-relevant semantic components, but ignores the regions that people do look
at (although with lower probabilities). This will result in a better KL score,
which is more sensitive to the matching between high-saliency (probability) re-
gions than between the low-saliency regions. In contrast, our full model learns to
optimally allocate saliency between high-saliency task-relevant semantic compo-
nents and other low-saliency regions. Therefore, although with a slightly worse
KL score, it can better cover both high- and low-saliency regions, as reflected
by other metrics. Finally, the results also suggest that our network can ben-
efit from having a shared encoder for the segmentation and task-free subnets.
This happens since the multi-task architecture can help our encoder learn better
hidden representation to boost the performance of both tasks.

Without pre-training on the synthetic data, the performance of our model
drops greatly. This confirms the importance of our task-driven data synthesis.
In addition, learning with only synthetic saliency data does not perform well,
due to the gap between the statistics of real and synthetic saliency data.

5.3 Comparison with Prior Works

We compare our method with several state-of-the-art works for free-viewing
saliency detection, including one method for graphic design saliency, VIMGD [4],
two recent methods for natural images, SalNet [23] and SALICON [10]. We also
make comparison with a recent classification-driven concept localization model
that is adapted to predict task-driven saliency by treating our task labels as class
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labels. For fair comparison, we finetune these models on the webpage saliency
dataset [24] using the same training setting as ours. Unfortunately, we did not
get the code for the free-viewing webpage saliency prediction method [28] for
comparison. Thus, we make visual comparison with the results included in their
paper (see the supplemental). For each webpage under each task, we run each
method to get a saliency map. Since the free-viewing saliency detection methods
do not take a task label as input, thus always producing the same results under
different task conditions.

The results are shown in Table 3. Our model outperforms all the prior meth-
ods in sAUC and NSS, and achieves the second best performance in KL. The
saliency detection models (SalNet, SALICON) generally perform better than
other prior methods and SALICON even has a better performance than ours
in KL. This is perhaps because that those free-viewing saliency models tend to
fire at almost all the salient regions in a webpage, thereby generating a more
uniform saliency distribution that is more likely to cover the ground truth salient
regions. This leads to a higher KL score. However, such uniform saliency predic-
tions certainly result in more false positives, making the performance of these
models worse than ours in sAUC and NSS. The task-driven saliency method,
Grad-CAM [25] performs worst in our evaluation dataset. This is likely because
the complex and highly variable appearance of webpages make it difficult for
classification-based models to find consistent patterns and identify discrimina-
tive features for different tasks, given our small dataset. Our model generally
perform well in all metrics, which demonstrates the effectiveness of our model
for predicting task-driven saliency. Human performance (Human) is also pro-
vided [12], which serves as upper bound performance.

Fig. 6 shows some qualitative results. Grad-CAM fails to locate salient regions
for each task.The free viewing saliency models (i.e., SalNet, SALICON, VIMGD)
simply highlight all the salient regions, oblivious to task conditions. Hence, we
only show one result from each of the prior methods regardless of the input task
label. In contrast, given different tasks, our model can predict different saliency
maps that are close to the ground truth. Please refer to the supplemental for
more results.

6 Conclusion

We have presented a learning framework to predict webpage saliency under
multiple tasks. Our framework disentangles the saliency prediction into a task-
specific branch and a task-free branch. Such disentangling framework allows
us to learn our model efficiently, even from a relatively small task-driven web-
page saliency dataset. Our experiments show that, for the task-driven webpage
saliency prediction problem, our method is superior to the baselines and prior
works, achieving state-of-the-art performance on a newly collected dataset.

Acknowledgement: We thank the anonymous reviewers for their insightful
comments. We also thank NVIDIA for donation of a Titan X Pascal GPU card.
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