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Fig. 1. Photo color adjustment results in the context of graphic designs. When inserting a photo into a graphic design (see the input designs on the left),

our model can automatically predict modifiable regions and recolor these regions with the target colors (see the color bars at the bottom of the input

designs) to form the output design (see our designs on the right). We show results generated by our model with a single target color in the first row and

with multiple target colors in the second row. We can see that our method can suggest appropriate regions for recoloring to the target colors, such that the

resulting images still look natural with the original object semantics preserved and the resulting designs look visually more harmonious. Our model is also

able to provide multiple suggestions for the user to choose from (see the right-most example in the bottom row). Photo courtesy of Pexels users Victoria

Borodinova, Thierry Fillieul, and Amponsah Nii Davidson.

When adding a photo onto a graphic design, professional graphic design-

ers often adjust its colors based on some target colors obtained from the

brand or product to make the entire design more memorable to audiences

and establish a consistent brand identity. However, adjusting the colors

of a photo in the context of a graphic design is a difficult task, with two

major challenges: (1) Locality: The color is often adjusted locally to pre-

serve the semantics and atmosphere of the original image; and (2) Natu-

ralness: The modified region needs to be carefully chosen and recolored to

obtain a semantically valid and visually natural result. To address these
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challenges, we propose a learning-based approach to photo color adjust-

ment for graphic designs, which maps an input photo along with the tar-

get colors to a recolored result. Our method decomposes the color adjust-

ment process into two successive stages: modifiable region selection and

target color propagation. The first stage aims to solve the core, challenging

problem of which local image region(s) should be adjusted, which requires

not only a common sense of colors appearing in our visual world but also

understanding of subtle visual design heuristics. To this end, we capital-

ize on both natural photos and graphic designs to train a region selection

network, which detects the most likely regions to be adjusted to the target

colors. The second stage trains a recoloring network to naturally propagate

the target colors in the detected regions. Through extensive experiments

and a user study, we demonstrate the effectiveness of our selective region-

based photo recoloring framework.
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1 INTRODUCTION

Photos play an important role in many types of graphic designs,

such as posters, advertisements, postcards, and slides. They are

not only decorations but also hooks to draw viewers in. When

adding a photo into a design, professional designers often need

to deliberately edit the colors of the photo according to some tar-

get colors. The target color can be the background theme color of

the design, or a distinctive brand color to be marketed through

the design. For example, the cloth of the man (the first row of

Figure 2) is intentionally colored in red to match the red in the

Coca Cola logo. The airplane, wall, envelope, and clothes (the sec-

ond row of Figure 2) are colored in orange to match the orange in

the DHL logo. Such color adjustment helps make the design more

memorable to the audience or establish a consistent brand iden-

tity [Ruzzier and De Chernatony 2013; Underwood 2003; Velarde

2018].

However, adjusting the color of a photo in the context of a

graphic design is a non-trivial task that poses two unique chal-

lenges as follows: (1) Locality: Instead of updating all the pixels of a

selected color in an image by a global operation, graphic designers

often prefer to restrict the editing to some local regions to preserve

the semantics and atmosphere of the image as much as possible. (2)

Naturalness: Rather than altering the color of an arbitrary region,

graphic designers need to make careful decisions regarding which

region to modify such that the results are semantically valid and

visually natural. Improperly selecting a region may end up with an

implausible recolored result (Figure 3). Besides, instead of trivially

copying the target color to a selected local region, the color of the

region needs to be tweaked carefully to render the recolored image

to be holistically natural.

There is already a large body of existing works on recoloring

a photo according to given colors. They can fall into two broad

categories: palette-based approaches and stroke-based approaches.

Unfortunately, none of them can be used to address the aforemen-

tioned challenges of the color adjustment problem in the context

of a graphic design. The palette-based approaches [Chang et al.

2015; Tan et al. 2018] recolor an input image by editing the color

palette extracted from the image. However, it is not clear what is

an effective strategy to map the target colors to the colors in the

palette. More fundamentally, these methods determine which pix-

els to change purely based on low-level relationship between the

colors in the image and those in the palette, making it difficult to

restrict the changes to local semantically meaningful regions. The

stroke-based approaches [Endo et al. 2016; Levin et al. 2004; Luan

et al. 2007; Yatziv and Sapiro 2006] can limit color changes to a local

region, but rely on users to indicate which local region to modify

by putting scribbles on it, which may sometimes require intensive

strokes to obtain a good result.

In this article, we propose a novel deep learning-based approach

to photo color adjustment in graphic designs to tackle the two chal-

lenges mentioned above in a unified framework. Given an input

image and one or more target colors specified by users, our ap-

proach automatically selects local regions in the input image for

each of the target color to perform color adjustment, with an objec-

tive of producing a visually natural recolored image. Our approach

consists of two stages.

Fig. 2. Graphic design examples where the brand colors are used to color

some selected regions in the images.

Fig. 3. The importance of selecting suitable regions for recoloring. In this

example, changing the mulberry regions to red produces a visually appeal-

ing and natural recoloring result (b). Recoloring an inappropriate region

may generate implausible and unpleasant results, as shown in (c) and (d).

Photo courtesy of Southern Idaho Landscape Center.

In the first stage, we train a network to select modifiable re-

gions for recoloring by jointly leveraging natural prior and design

knowledge. Our insight is that both natural images and graphic

designs are promising sources to extract useful knowledge for re-

gion selection in our recoloring task. Hence, we first learn a natural

prior from a large natural image dataset to guide region selection

based on the color statistics in our natural world. However, using

the learned natural prior alone is not sufficient to constrain the

region selection problem, since a single image may have multiple

regions whose color changes can induce equally plausible recolor-

ing results. This calls for adding more rules to regularize the region

selection process. However, hand-engineering some heuristics re-

quires a lots of manual efforts and expert knowledge. Instead, we

propose to directly learn the knowledge of how professional de-

signers choose regions for recoloring from a collection of graphic

designs. To this end, we have collected a new labeled graphic de-

sign dataset, where target colors along with their corresponding

regions on the designs can be intuitively identified.

In the second stage, we learn a recoloring network to adjust the

color of the selected region, while still preserving the visual nat-

uralness of the entire image. To produce a more vivid and nat-

ural recolored image without artifacts near the region boundary,

we introduce a new deep learning recoloring model based on gen-

erative adversarial network (GAN) [Goodfellow et al. 2014] and

a soft boundary propagation method. We have conducted exten-

sive qualitative and quantitative evaluations. Results show that our

method outperforms existing recoloring methods for the recolor-

ing task in the context of graphic design.

In summary, we make the following contributions:

• We propose a deep learning-based approach to address the

photo color adjustment problem in graphic designs, which

can selectively adjust local regions in a color photo according

to given target colors.
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• We propose a model to localize modifiable image regions

based on the target colors, by taking advantage of both nat-

ural prior and design knowledge that are learned end-to-end

from data without using any heuristics.

• We have collected a new graphic design dataset, containing

about 2,000 images used in real-word graphic designs, each of

which is annotated with human-identified target colors and

corresponding modified regions.

2 RELATED WORK

Our work is related to an earlier work that also tries to automat-

ically select regions for recoloring [Cohen-Or et al. 2006]. While

their goal is to achieve color harmonization of the whole image,

ours is to recolor based on the given target colors. In this section,

we provide an overview of the major related works on example-

based and palette-based recoloring that globally change the colors,

and stroke-based methods that locally adjust the colors via user

interactions.

2.1 Example-based Recoloring

Example-based recoloring aims to transfer the color style of a ref-

erence image onto an input image. Chang et al. [2005] catego-

rize the color space through psychological experiments, and trans-

fer the color of matching pixels within the same category. Ha-

Cohen et al. [2013] propose a method to automatically propagate

image enhancement operations to the input image with a similar

content to the reference image, based on dense correspondences.

Huang et al. [Huang et al. 2014] build a factor graph to learn

the color distribution from examples, and generate new recolored

images using Markov chain Monte Carlo methods to sample in

the space. Recently, deep learning techniques are widely used in

example-based recoloring [Gatys et al. 2016; He et al. 2018; Luan

et al. 2017]. Luan et al. [2017] introduce local affine constraints

on [Gatys et al. 2016] to achieve photo-realistic color transfer.

Example-based recoloring often requires a reliable correspondence

between the reference image and the target image. To mitigate this

problem, Liao et al. [2017] present a deep learning approach to

build dense semantic correspondences between two images in a

hierarchical way and then transfer colors accordingly. While these

works can generate impressive results, they are not aligned with

our problem setting, as they transfer colors to the input image

without maintaining any original color statistics and require an

additional reference image as input.

2.2 Palette-based Recoloring

In palette-based recoloring, it is critical to address the palette ex-

traction problem and the image decomposition problem based on

the extracted palette. Chang et al. [2015] propose an intuitive in-

teraction tool for fast exploration of recoloring results by ma-

nipulating a palette extracted using a variant of k-means. Zhang

et al. [Zhang et al. 2017a] decompose colors of the entire im-

age into linear combinations of basis colors in the palette. Aksoy

et al. [2017] propose a soft color segmentation method to decom-

pose an image into color layers with alpha channels. Tan et al.

[2018] decompose images in the RGBXY-space, which is more ef-

ficient. All these methods, however, require users to manually as-

sign color correspondences between the input and target palettes.

Wang et al. [2010] learns a prior of texture-color relationship over

possible recoloring from a large dataset. This allows users to en-

hance the color of an image based on example color themes and

maintain natural look of recolored images. A recent work [Kim

and Suk 2018] aims to automatically adjust the colors of the image

in a graphic design based on a single target color. It is heuristic-

based by changing the color of a region that has the closest color

to the target one. This method can easily generate unnatural re-

sults without considering any semantic constraints. Instead, our

model can automatically localize semantically meaningful regions

to be recolored so that the resulting images still look plausible and

natural.

2.3 User-guided Recoloring

This class of methods propose to recolor images by propagating

a desired color through user scribbles [Endo et al. 2016; Levin

et al. 2004; Li et al. 2008; Luan et al. 2007; Yatziv and Sapiro 2006].

Levin et al. [2004] propagate scribbles to pixels with similar lumi-

nance. Yatziv and Sapiro [2006] further accelerate the process by

using luminance-weighted chrominance blending and fast intrin-

sic distance. Luan et al. [2007] present an interactive recoloring

framework for natural images with complex texture by incorpo-

rating both intensity-continuity and texture-similarity constraints

to group pixels into coherent regions. Endo et al. [2016] train a

convolutional neural network (CNN) to learn visual features au-

tomatically for color propagation. All these methods require users

to specify, often intensive, strokes or points to indicate the regions

to modify. Instead, our method automatically predicts the regions

that are suitable for recoloring, rendering the recoloring task to be

easier and more efficient.

3 OVERVIEW

Given a graphic design and a photo to be inserted into the design,

we want to construct a model to adjust the color of the photo lo-

cally, so that the recolored photo matches with the given target col-

ors and still looks natural. We focus our study on common graphic

designs that contain a small number of visual elements, such as

posters, advertisements, and fliers, where the target colors are of-

ten clearly defined and can be extracted easily. We extract the tar-

get colors from an input design by simply using the major colors

of other existing elements. We choose to train a CNN to adjust col-

ors based on low-level visual cues and high-level semantics in the

input image.

Our system carries out the color adjustment task in two stages

(Figure 4). The first stage is to find out which parts of an image are

suitable to be changed to a given target color. We train a Region

Selection Network to find possible regions and rank them based

on their likelihoods so that users may optionally choose to cus-

tomize their results. In the second stage, our Recoloring Network

learns to propagate each target color naturally in its correspond-

ing selected regions. One merit of such a two-stage framework

is that it enables users to easily express their preference in the

recoloring process. To do this, instead of automatically identify-

ing a single modifiable region for a target color, our region se-

lection network can produce multiple region suggestions ranked
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Fig. 4. Overview of our framework. Our framework contains two stages: the region selection network aims to find modifiable regions of the original image

for color adjustment; the recoloring network aims to propagate the target colors in their corresponding selected regions naturally. Photo courtesy of Pexels

user Victoria Borodinova.

by their likelihoods. Users are able to select their preferred re-

gion among all the suggestions to customize their own recoloring

results.

Collecting a large-scale paired data (i.e., images before and af-

ter recoloring) for training is difficult. Fortunately, we can collect a

large amount of colorful, natural, and aesthetical images from on-

line repositories. Our idea here is to consider these collected color

images as the recolored results, such that target colors are directly

accessible (i.e., on the color images) and the modified regions with

respect to the target colors can be identified either automatically or

via intuitive manual labeling. However, we still need to obtain the

original images (i.e., the images before recoloring), and the original

colors of the modified regions are unknown and hallucinating the

original colors is not an easy task. Even using the state-of-the-art

colorization model [Zhang et al. 2017b], the generated color dis-

tribution still has a big gap to the real color distribution of natural

images, which can mis-train the model. To address this problem, in

the Region Selection Network, we propose to use grayscale images

as input, which forces the model to focus more on the context in-

formation than on the original colors of the modifiable regions. We

demonstrate in Section 6.3 that our model is able to locate suitable

regions for a given target color, from a grayscale image. Further in

the Recoloring Network, we cast color propagation as an inpaint-

ing problem, which will be discussed in Section 5.

4 REGION SELECTION NETWORK

Given an input image I and a target color C , the region selec-

tion network F aims to predict a set of modifiable regions for the

target color. Figure 5 shows the pipeline of our region selection

model F . It consists of three sub-nets, learned from two kinds of

data sources: a natural image dataset (Natural Prior) and a graphic

design dataset (Design Knowledge). The selection map sub-net S
(Figure 5, left) predicts a selection map, which indicates the likeli-

hood of each pixel to be recolored to a given target color. We train S
on a large natural image dataset (i.e., ImageNet [Russakovsky et al.

2015]) to learn a prior on color patterns of natural objects and ap-

ply it during inference to estimate modifiable regions. This is be-

cause when choosing a region for recoloring, we tend to exploit

our natural color priors of different real-world objects to make the

decision. Particularly, if changing the color of a region to a tar-

get color will change its semantic class or even make it semanti-

cally implausible (e.g., changing the sky to green), the region is less

likely to be selected.

While our learned natural prior can help enforce the naturalness

of the recolored images by suggesting probable regions, it does not

take into account design heuristics that expert designers usually

use in selecting regions in real-world recoloring tasks. Modeling

the knowledge of professional designers can help resolve certain

ambiguities in region selection, especially when there are multi-

ple regions with similar likelihoods of being selected. For exam-

ple, both the wall and t-shirt in an image can be recolored as red

according to the natural prior. However, graphic designers may

choose to recolor the t-shirt as it is a more salient region and thus

can catch the readers’ attention better. To this end, we have col-

lected a labeled graphic design dataset and trained our network

on it. However, region selection by human experts can be inher-

ently subjective. Hence, when learning design knowledge, instead

of predicting a single selection map, we augment the selection map

sub-net with a region proposal sub-net and a mask sub-net to pre-

dict a set of candidate selection maps. Note that in our model, de-

sign knowledge learning and natural prior learning share the same

selection map sub-net, which means that the selection map sub-

net is first pre-trained on natural images and then fine-tuned on

graphic designs. This allows our model to capture both knowledge

jointly.

Specifically, our region selection network F takes as input a

grayscale image IL (the L channel of the input image in the CIE

Lab color space), and the chrominance values (ab color channels)

of the target color Cab , and outputs a set of modifiable regions

that are suitable to be recolored toCab . Each region is represented

by a mask mi along with a confidence score vi indicating its the

likelihood of being selected:

(mi ,vi )i=1, ...,n = F (IL ,Cab ), (1)

where n is the number of proposed regions. Although our model

F only takes one target colorC as input, it can be easily extended

to take multiple target colors, by running it multiple times, each

with a different color as input.

4.1 Learning the Natural Prior

Given a grayscale image IL ∈ RH×W and the chrominance values

of a target colorCab ∈ RH×W ×2 , our selection map sub-netS pre-

dicts a per-pixel selection map S ∈ RH×W for IL as

S = S (IL ,Cab ), (2)
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Fig. 5. Our region selection network. Given an input image and a target color, our model is able to automatically predict a set of modifiable regions in

a binary mask format. Our region selection model has two stages. The first stage learns the natural prior from a large natural image dataset to predict a

pixel-wise selection map indicating the likelihood of each pixel to be recolored to the target color. The second stage learns the design knowledge from a

newly collected graphic design dataset to further constrain the region selection task. Photo courtesy of Unsplash user Charles Deluvio.

where a higher value indicates a higher probability for the pixel to

be selected and recolored to Cab . The selection map needs to be

content aware and conform to the natural color statistics. There-

fore, we propose to learn the selection map sub-net from a col-

lection of natural images that inherently come with statitsics of

natural colors.

To train the network, we use ImageNet [Russakovsky et al.

2015], one of the largest public natural image datasets and seg-

ment each image in it into a set of disjoint segments. Since the

target colors and ground-truth selection maps are unknown a pri-

ori on these images, we synthetically generate our training data.

In particular, for each image I in the dataset, we randomly select

an image segment and use its mean color as the target colorCk for

the image. Given the target color, we assume that the pixels in the

selected segments have a higher chance to be colored toCk than all

the other pixels in I and thus create a binary mask for the selected

segment as the selection map Ŝk . We end up with the training data

in the form of (I ,Ck , Ŝk ).
While there are already many available semantic segmenta-

tion datasets, containing well-annotated image segmentation, they

are not applicable to our task, as each semantic segment may

consist of multiple regions with different color distributions. For

example, a person is often labeled as one semantic segment,

but the t-shirt of the person may have a more dynamic color

range than the skin. Besides, existing semantic segmentation

datasets cover only a limited number of object types. Instead, tra-

ditional image segmentation methods that group pixels of simi-

lar colors into regions are more suitable for our problem. Thus,

we obtain our image segmentations using a state-of-the-art im-

age segmentation method, Single-scale Combinatorial Grouping

(SCG), [Arbeláez et al. 2014] on our dataset. SCG is a bottom-

up method with an efficient normalized cut algorithm and group-

ing method, designed to generate image segmentation and object

candidates. The scale of SCG is set to 0.6 to obtain a mid-level

segmentation.

For each training tuple (I ,Ck , Ŝk ), we train the selection map

sub-net with the following pixel-wise cross entropy loss:

Lnp = −
∑

x

∑

y

[
ˆS

x,y
k

log S
x,y
k
+
(
1 − ˆS

x,y
k

)
log
(
1 − Sx,y

k

)]
. (3)

The initial selection map derived from the natural prior is a coarse

probability map, and will be refined by incorporating the design

knowledge, which is described in the next section.

4.2 Learning the Design Knowledge

To incorporate the design knowledge into region selection, we pro-

pose to learn from the graphic design dataset. This is because when

adding a photo into a graphic design, professional designers often

deliberately edit the color of the photo to match with either the

brand color or the background theme color. For example, the cloth

of the man in Figure 2 (first row) is intentionally colored as red

to echo with the main color of the Coca Cola logo. The airplane,

wall, envelope, and clothes in Figure 2 (second row) are colored as

orange-yellow to echo with the main color of the DHL logo. Such

color adjustment helps make the design more memorable to the

audience, or establish a consistent brand identity. To capture this

knowledge and deal with the multi-modal nature of predicting hu-

man choices, we build a region selection model by augmenting the

selection map sub-net with a region proposal sub-net and a mask

sub-net, as shown in Figure 7. Given a grayscale image IL , with

the chrominance values of a target color Cab , the region selection

model outputs a set of masks {m1,m2, . . . ,mn } with confidence

scores {v1,v2, . . . ,vn }, indicating a list of suggested regions that

are suitable to be changed to Cab .

4.2.1 Training Data. We downloaded around 20,000 designs

with various appearances from Canva,1 a professional online de-

sign repository. After removing duplicate or low-resolution de-

signs, we further filtered them by manually selecting the designs

1https://www.canva.com/templates/.
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Fig. 6. Examples from our graphic design dataset. For each design, we

extract its target color and photos. For each photo, the mask of the regions

that use the target color is labeled. Photo courtesy of Canva.

where the colors of some regions are consistent with its theme

colors. We hired two people with graphic design experience to an-

notate each design by pointing out its theme colors and specifying

the masks of the corresponding regions in the photo. Note that

there may be more than one region to be annotated for a single

color, since designers likely modified multiple regions. If multi-

ple regions of different semantics are selected for a single color,

then we label the regions in seperate masks (as shown at the first

row of Figure 6). If multiple disjoint regions belonging to the same

semantic part are selected, then we label them in a single mask

(e.g., as shown at the lower right part of Figure 6). The theme col-

ors (i.e., target colors) are often from the background colors or the

text/brand colors on the designs. Finally, we obtained 1,968 pairs

with 2,876 individual region masks. We randomly selected 1,876

pairs for training and use the rest for testing. Figure 6 shows sev-

eral examples in our graphic design dataset.

4.2.2 Loss Function. The selection map sub-net still predicts a

selection map S from IL and Cab . The region proposal sub-net P
takes as input an intermediate representationU from the selection

map sub-net and generates a set of region proposals (i.e., bounding

boxes):

{Bi ,vi } = P (IL ,Cab ), Bi = [xi ,yi ,wi ,hi ], vi ∈ [0, 1],

where the ith bounding box Bi is represented by its center (xi ,yi ),
width wi and height hi , and confidence score vi . For each region

proposal Bi , we use its bounding box to crop the corresponding

regions on IL , S , andU , obtaining the cropped results IBi

L
, SBi , and

U Bi , which are then concatenated and sent into the mask sub-net.

The mask sub-netM generates a mask for the region:

mi =M (IBi

L
, SBi ,U Bi ).

Region Proposal Sub-net. Here, we borrow the idea from the

state-of-the-art object detectors [Redmon and Farhadi 2018; Ren

et al. 2015] and predict bounding boxes by regressing offsets from

a set of anchor boxes. In particular, we project each point on the

input feature map U back onto the image plane and consider a

set of K anchor boxes of different aspect ratios. For each anchor

box, we predict a confidence score and four scalars that transform

the anchor box to an output bounding box. In our implemention,

we set K = 4 and estimate the anchor boxes as cluster centroids

after clustering all the boxes in the graphic design dataset using

k-means.

Given an anchor box with center position (x ′,y′), widthw ′ and

height h′, we predict an offset vector (tx , ty , tw , th ). The predicted

bounding box is then defined as

xi = siдmoid (tx ) + x ′, (4)

yi = siдmoid (ty ) + y′,

wi = w
′etw ,

hi = h
′eth .

During training, we follow Redmon and Farhadi [2018] to classify

each anchor box into three different categories: (1) leading anchor

box that has the largest overlapping area with the ground-truth re-

gion, (2) positive anchor box that has intersection-over-union (IoU)

larger than 0.5 with the ground-truth region and is not a leading

anchor box, and (3) negative anchor box that does not belong to

Equation (1) or Equation (2).

We denote leading, positive and negative anchor boxes as B#,

B+, and B−, respectively. The loss function is defined as

Lbbx =
∑

i ∈B#∪B−

Lbce (vi , v̂i ) +
∑

i ∈B#∪B+

| |Ti − T̂i | |22 , (5)

where Lbce is a binary cross entropy function; vi and Ti are pre-

dicted confidence score and offset vector for the ith anchor box, re-

spectively; and v̂i and T̂i are the ground truth. For B#, we set their

ground-truth confidence scores as 1. For B−, we set their ground-

truth confidence scores as 0.

Mask Sub-net. For each region proposal Bi , the mask sub-net

outputs a residual, which is added to the cropped region from the

selection map SBi
to get the final predicted mask M . We choose to

predict a residual, since SBi
is already a coarse shape of the selected

region. The mask sub-net is trained to approach the ground mask

M̂ in a binary cross entropy sense:

Lmask = −
∑

x

∑

y

[M̂x,y logMx,y + (1 − M̂x,y ) log(1 −Mx,y )].

(6)

4.3 Network Architectures

Figure 7 shows the network architecture of our region selection

model.

Selection Map Sub-net. We use a U-Net encoder-decoder ar-

chitecture with skip connections [Ronneberger et al. 2015], as it

has shown good performance in many image manipulation tasks

[Portenier et al. 2018; Zhang et al. 2018, 2017b]. We represent an

input target color as a two-channel color map with the same reso-

lution as the input image by duplicating its ab values spatially. The

selection map sub-net consists of 10 convolutional blocks, each of

which contains approximately two to three conv-relu pairs, fol-

lowed by a batch normalization layer [Ioffe and Szegedy 2015].

Skip connections are added between the outputs of first and ninth,

second and eighth, and third and seventh blocks.

Region Proposal Sub-net. We choose to predict region pro-

posals on feature maps, rather than in pixel space, to capture

object-level information better. Thus, the input to the region pro-

posal sub-net is the output of the “conv7_4” layer of the selection

map sub-net, just before the upsampling operation. The region
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Fig. 7. The network architectures of modules in our region selection model.

proposal sub-net includes six convolutional layers, each followed

by a batch normalization layer and a ReLU activation function, ex-

cept for the last convolutional layer. The output of the last con-

volutional layer contains the offsets and confidence scores for all

anchor boxes. The confidence scores are normalized by a sigmoid

function into [0,1].

Mask Sub-net. It takes three inputs: the cropped regions of the

selection map, input image, and feature map (i.e., “conv7_4”) based

on a region proposal. They are first rescaled to the same resolu-

tion using bilinear interpolation and then passed through three

separate convolutional layers, respectively, to obtain three feature

maps. The feature maps are then concatenated along channel, and

fed into a network composed of five convolutional layers with

batch normalization and ReLU nonlinearity to produce a residual

map. The residual map is added to the input cropped selection map

to generate an output mask.

4.4 Training

We train the whole region selection model in three stages.

S1: We train the selection map sub-net S on synthetic data

generated from the natural image dataset (i.e., ImageNet) using

Equation (3).

S2: We take S trained in S1 as a pre-trained model. Then,

while keeping the weights of the region proposal sub-net P , we

jointly train the selection map sub-net S and mask sub-net M
on the graphic design dataset using a combined loss function

λnpLnp + λmaskLmask . This fine-tuning step helps the model and

the feature map (i.e., “conv7_4”) capture both natural prior and

design knowledge, which will boost the performance of predicting

region proposals (as validated in Section 6.3.4). We use the ground-

truth bounding boxes to create inputs to the mask sub-net.

S3: After the first two stages, we fix the weights of S and only

train the region proposal sub-net P on the graphic design dataset.

We use the Adam optimizer [Kingma and Ba 2014] with lr =
1e − 4 for training. Training images are first resized to 256 × 256

and then randomly cropped to 224 × 224. As all our models are

fully convolutional, they support arbitrary input size during in-

ference. In addition, our region selection model can be used in an

end-to-end manner during inference. For S1, we train for 15 epochs

with a batch size of 100, and the training procedure takes around

5 days on 6 × Titan XP GPUs. For S2 and S3, we train a batch size

of 10 on 2 Titan XP GPUs for 50 epochs. For other parameters, we

set the size of the cropped image asW ′ = H ′ = 56, and the weight

parameters of different loss functions as λnp = λmask = λbbx = 1

for Lnp , Lmask , and Lbbx , respectively.

5 RECOLORING NETWORK

Given a selected region in an input color image and a target color,

the recoloring network aims to propagate the target color into se-

lected region naturally. Since ground-truth recolored images are

not readily available and there are weak correlations (if any) be-

tween the target colors and the original colors of their correspond-

ing regions, we choose to mask out the colors within the selected

region of the input image. In this way, our task can be viewed

as a color inpainting problem (i.e., fill in the color of a missing

region according to a target color). This formulation also allows

us to learn the network from synthetic training data as detailed

below. Specifically, the inputs to the recoloring network include

an input image I ∈ RH×W ×3, masked by a selected region mask

M ∈ {0, 1}H×W , and a target color map C ∈ RH×W ×3, where the

selected region is filled with the corresponding target color. In

M , we set the values inside the selected region as 1 and 0 else-

where. The output of this network is a residual chrominance map

ΔIab ∈ RH×W ×2 to be added to the ab channels of image I to get

the chrominance values of the final recolored image Rab .

5.1 Dataset Construction

Training our network requires a large scale dataset of image pairs

before and after recoloring, which is not available and is difficult to

obtain. Asking designers to manually edit images is tedious, time-
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Fig. 8. Dataset construction for our recoloring network. We generate the

synthetic dataset by taking a color image as the recolored result, and

masking out the color of a region (i.e., the background in this example)

to generate an input masked color image. The target color is the mean

color of the masked-out region in the color image.

consuming, and may also limit the diversity of the generated pairs.

We bypass this problem by generating a synthetic dataset to sim-

ulate diverse inputs that the network may encounter during infer-

ence. In particular, as illustrated in Figure 8, given a color image,

we directly take its ab color channels as the output recolored im-

age Rab . To generate the corresponding inputs, we randomly sam-

ple one region in the segmentation map (obtained using SCG [Ar-

beláez et al. 2014]). We use the region mask M to indicate the miss-

ing region, and we use its mean color as the target colorC . We then

mask out the colors of the pixels in the selected region by setting

their chrominance values to 0 to obtain a masked color image I ′
ab

.

The network is then tasked with reconstructing Rab by taking C ,

M and I ′
ab

as input, and thus learns how to propagate the target

colorC within the region M so that the predicted color will be co-

herent with the context of the region in I ′
ab

.

However, many objects involve fuzzy boundaries, such as the

hair of a furry dog [Aksoy et al. 2018]. An imperfect binary re-

gion mask predicted by our region selection model may produce

serious artifacts near the boundary. To address this problem, dur-

ing the data synthesis process, for each selected region, we create

a transition region within a distance r ∼ U [0, 20] from the region

boundary. The pixels in I ′
ab

that are inside this region are turn

into gray (by zeroing out their ab color values). In this way, the

network is forced to treat the areas around the region boundaries

differently and learn how to propogate colors correctly on both

sides of the boundaries. We show the effectiveness of this method

in Section 6.4.

5.2 Training

The recoloring network (Figure 9) uses almost the same architec-

ture as the selection map sub-net, except that we further add a skip

connection from the input image and the output residual map to

form the final output. All the inputs are concatenated along chan-

nel and then send into the network. We train the recoloring net-

work on the ImageNet dataset [Russakovsky et al. 2015]. During

training, each training example contains only a single selected re-

gion. However, during test time, our model can support recoloring

multiple regions in a single feed-forward pass, by simply modify-

ing the inputs to encode the information of all the regions.

To train the network, inspired by recent works on image-to-

image translation [Iizuka et al. 2017; Isola et al. 2017], two loss

functions are jointly used. An l2 reconstruction loss is used to

encourage the network to correctly propagate the target colors

within their respective designated regions. A GAN loss is also in-

troduced to further improve the realism of the recoloring results.

We define the l2 loss as

LMSE = | |R (I ′
ab
,C,M ) − Rab | |2. (7)

For the GAN loss, we use the LSGAN loss [Mao et al. 2017], since

it is shown to be more stable during training:

LGAN = ER [(D (R) − 1)2] + EI ′
ab

[D (R (I ′
ab
,C,M )2]. (8)

As the training dataset only covers a limited set of target colors,

during training, for half of the training examples in each sampled

min-batch, we assign their target colors with random colors. Since

the ground-truth recolored images are not known for such exam-

ples, we only apply the GAN loss on them to encourage their re-

colored images to be as real as possible.

For the discriminator, we use the PatchGAN discriminator [Isola

et al. 2017], which is commonly used in recent image manipulation

tasks. Rather than classifying the whole image, it tries to classify

if each randomly sampled image patch from the generated image

is real or fake. This enables our model to generate more realistic

local color details and more natural color transition across region

boundaries. The discriminator consists of five convolutional lay-

ers. Each of the layers is followed by a batch normalization layer

and LeakyRelu nonlinearity, except the output layer.

The final loss is a linear combination of LMSE and LGAN with

both weights set to 1. We use the Adam optimizer [Kingma and Ba

2014] with a learning rate of 1e − 4 for training. By default, we train

the network for 15 epochs with a batch size of 100. The training

procedure takes around 5 days on 6 × Titan XP GPUs.

6 RESULTS AND EXPERIMENTS

We show our automatic recoloring results for various graphic de-

signs in Figure 1 and Figure 10. All the images are not seen by

our method during training. For each example, we select the top

ranked regions predicted by the region selection network for the

given target color. We can see that after adjusting the color of

the photos, the photos become more visually harmonious with

the graphic designs, while remaining natural. Note that our model

is able to provide multiple suggestions for the same inputs in

real time. The selected regions span objects of different semantic

classes at different scales, and at both foreground and background.

We first compare our framework with several existing methods

qualitatively and quantitatively, and then conduct experiments to

further analyze the different components of our framework.

6.1 Test Set

To evaluate the performance of our framework, we first prepare a

test set. We collected a set of 88 photos from online stock reposito-

ries (pexels.com and unsplash.com) and previous recoloring works

[Chang et al. 2015; Kim and Suk 2018; Tan et al. 2018]. The con-

tent of the photos ranges from natural scene to indoor scene, from

human, animal, food to plant. For each photo, we randomly select

one or two target colors forming a set of 136 evaluation cases (i.e.,

each case contains an input image and a single target color). We

randomly split them into three groups, each assigned to a different

professional graphic designer. For each design case, the designers
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Fig. 9. The architecture of our recoloring network.

Fig. 10. Automatic recoloring results. We show the input designs on the left and recolored designs on the right. After recoloring, the designs become more

visually harmonious with their corresponding target colors. We visualize the target color in a vertical bar on the left of each design. Photo courtesy of Pexels

users Moose Photos, and Yasmine qasem, and Unsplash user Suhyeon Choi.

were asked to mask a region that they believed to be most suit-

able to be modified according to the target color and recolor the

input image accordingly to maintain a natural looking. They were

allowed to use any tools that they wanted, such as photoshop. We

take their region selection and recoloring results as the ground

truth.

6.2 Comparison to Prior Methods

We compare our method with the following methods:

• A state-of-the art work on photo color adjustment for graphic

designs [Kim and Suk 2018]. It adjusts the hue of an input

photo iteratively until the minimum hue difference (�Hue)

between the target color and the colors in the image palette

satisfies the condition (i.e., �Hue > 90◦ or �Hue < 5◦). This

method will not adjust color if the hue difference is too large

to get good results. They summarize the color palette using

k-means.

• Palette-based recoloring methods [Chang et al. 2015; Tan

et al. 2018] with nearest neighbor (NN) search. Note that

these methods are neither intended nor designed for photo

recoloring in graphic designs. We use them as baselines for

comparison. Palette-based methods require users to manu-

ally manipulate the color palette of an input image for re-

coloring. To automate this process, we follow the approach

of Kim and Suk [2018]. Given a target color, we adjust its

nearest color in the original palette to it to get a target palette.

• Palette-based recoloring methods [Chang et al. 2015; Tan

et al. 2018] with our region selection (Reg.). Rather than

modifying the nearest color, we adjust colors in the original

palette that dominate the region selected by our method to

the target color. It is worth noting that the dominant color

can also appear outside our predicted region.

6.2.1 Qualitative Results. We show qualitative results in

Figure 11. As can be seen, even though improving visual harmony

of the input photos w.r.t. the target colors, other methods fail to

deliver natural and aesthetically pleasing results. This is mainly

because other methods modify colors solely using pixel-level in-

formation (i.e., colors) without exploiting semantic features of the

input photos, thereby changing the pixel colors globally and giving

unnatural colorizations for some semantic regions (e.g., turning

the sky to green in the second column and face to purple in fourth

column). In contrast, our method is able to restrict color changes to

carefully selected local regions (i.e., the hat in the first column, the

grass in the second column, bus in third row, and cloth in fourth

column) and, therefore, produce natural recolored results.

6.2.2 Quantitative Results. We first calculate the PSNR of dif-

ferent methods on our test set and show the results in Table 1. Our

method achieves the highest PSNR score than the prior methods.

When provided with our region selection results, [Tan et al. 2018]-

Reg. achieves a higher PSNR score than [Tan et al. 2018]-NN and

even [Kim and Suk 2018], indicating the effectiveness of our region

selection.

User Study. In addition to PSNR, we conduct a user study on 75

design cases randomly selected from the test set on Amazon Me-

chanical Turk. Participants were asked to complete a series of pair-

wise comparisons. For each pair of designs, we asked them to an-

swer two questions: ”Which design looks more harmonious?” and

”Which design looks more natural?” in a two-alternative forced

ACM Transactions on Graphics, Vol. 40, No. 2, Article 17. Publication date: April 2021.



17:10 • N. Zhao et al.

Fig. 11. Qualitative comparison of our method with an existing photo recoloring method for graphic designs [Kim and Suk 2018] and variants of two

palette-based methods [Chang et al. 2015; Tan et al. 2018]. For the NN variant, the color in the original palette of an input image that is nearest to a target

color is changed to the target color. For the Reg. variant, we use our region selection network to predict a region to change, and modify the colors in the

orignal palette that dominate the predicted region to the target color. For result of each palette-based method, we show an original palette (left) and a target

palette (right), and highlight the changed colors with red bars. These results show that our method can generate more natural results. Photo courtesy of

Unsplash user Annie Spratt and MIT-Adobe FiveK Dataset.

choice (2AFC) manner. The two designs within a pair are two re-

coloring results from the same photo - one by our method and one

original, ground truth or by one of the compared methods ([Kim

and Suk 2018] and [Tan et al. 2018]), which were shown side-by-

side in randomized order. We take [Tan et al. 2018] as a represen-

tative of the palette-based methods in this experiment, as it has

a higher PSNR score. All designs were displayed at a resolution of

256 pixels on the short edge. Each HIT consists of 25 different pairs.

Each participant is not allowed to work on more than 3 HITs. Each

pair is evaluated by more than 3 different participants. We show

results in Table 2. It can be seen that our method considerably im-

proves the harmony and naturalness of the original. Though there
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is still a gap between our results and the ground truth, our method

outperforms previous methods in terms of both harmony and nat-

uralness, and achieve similar performance in naturalness to the

professional designers. Since [Kim and Suk 2018] is especially de-

signed for recoloring based on a single target color, it has a better

performance than the variants of [Tan et al. 2018] in harmony.

6.3 Evaluation of the Region Selection Network

During test time, we filter out the region proposals whose confi-

dence scores are less than 0.8, and use non-maximum suppression

to remove duplicates with IOU larger than 0.4. To generate a bi-

nary mask with clear boundary for sending into the recoloring

network, we refine the predicted masks with an iterative Condi-

tional Random Field used in an existing salient object detection

model [Wang et al. 2017]. For fair comparison, we apply the same

post-processing step to all the methods mentioned in this section.

6.3.1 Comparison to Baselines. To evaluate the quality of the

predicted regions, we compare our model with the following base-

lines on the collected 136 design cases mentioned in Section 6.1.

Image Segmentation: Given an input image, we randomly

sample a segment from the results of an image segmentation

method (i.e., SCG [Arbeláez et al. 2014]) as the predicted region.

We experiment with two different scales, 0.6 (SCG0.6) for a finer

segmentation and 0.8 (SCG0.8) for a coarser, more object-level seg-

mentation. The two scales are chosen since they are close to the

empirical mean of sizes of the regions selected by the designers in

our testing dataset.

Semantic Segmentation: We first segment an input image

with semantic soft segmentation (SSS) [Aksoy et al. 2018] to sepa-

rate it into different semantically meaningful regions. We then ran-

domly sample a semantic segment and treat it as the predicted re-

gion (SSS). As a single semantic region may contain multiple parts

with different color distributions in nature, for each semantic seg-

ment, we further split it into different sub regions using SCG, and

integrate sub regions who have similar mean colors as the pre-

dicted region (SSS-SCG).

Saliency: We find that human prefer to adjust the color of

more salient regions (Saliency) in Section 6.3.4. Inspired by

this, we use a state-of-the-art saliency detection method [Liu

et al. 2018] to detect a salient region in an input image and

treat it as the predicted region (Saliency). Further, we combine

saliency detection with image segmentation by only sampling im-

age segments obtained by SCG within the salient region

(Saliency-SCG).

Natural Prior: We use SCG to break an input image into dif-

ferent segments. However, instead of sampling the segments ran-

domly as before, we guide the region prediction using a natural

prior learned by a recent deep learning-based image colorization

method [Zhang et al. 2017b] as baseline (deep colorization (DC)),

which is trained on the same natural image dataset as our model.

Given an input grayscale image and a target color, we use its Local

Hints Network to predict a probability distribution over the quan-

tized color bins for each pixel and convert it to a continuous dis-

tribution using kernel density estimation. The predicted distribu-

tions indicate the likely colors for each pixel for image colorization.

Table 1. PSNR Scores of Different

Methods on Our Test Set

Methods PSNR

[Chang et al. 2015]-NN 20.52

[Chang et al. 2015]-Reg. 21.68

[Tan et al. 2018]-NN 22.73

[Tan et al. 2018]-Reg. 23.98

[Kim and Suk 2018] 22.77

Ours 25.63

Table 2. Results of the User Study on Recoloring Results

vs. Methods % Preferred Ours

Harmony Naturalness

Original 60.9 65.3

[Kim and Suk 2018] 56.4 65.3

[Tan et al. 2018]-NN 64.9 64.0

[Tan et al. 2018]-Reg. 66.7 64.9

Ground Truth 32.9 52.9

We compare our method (Ours) against either the original, ground
truth, or previous methods (Kim and Suk [2018] and Tan et al. [2018])
using 2AFC pairwise comparisons and show the percentage of pre-
ferred votes by participants on ours under two factors: harmony and
naturalness.

Therefore, we compute a selection map by using the probabilities

of the target color at all the pixels to guide the segment selection.

Results. We show the quantitative results of our method com-

pared with the baselines in Figure 12 and some qualitative compar-

ison results in Figure 13 and 14. In view of the generative nature of

our task, we report top K accuracy, by using each method to predict

multiple selected regions and regarding the prediction as correct

if any of the top K regions has an IoU) of greater than 0.5 with the

ground truth. As can be seen in Figure 12, our method outperforms

all other methods by a large margin. We analyze the performance

of region selection from two aspects: correctness and compact-

ness. For correctness, a random guess with image segmentation

(SCG0.6/0.8) or semantic segmentation (SSS) often gives wrong

predictions and has around 5% chance to be correct. By constrain-

ing the selection within a salient region (Saliency), the accuracy in-

creases slightly. However, a problem with selecting within salient

regions is a bias towards choosing foreground regions. While this

works in some cases, it will fail miserably when the target colors

are more suitable to be assigned to background objects, such as

blue for the sky and green for the trees (Figure 17). With the help

of the natural prior, we observe large performance improvements,

which indicates that the natural prior provides useful information

for our task. Our model leads to the best results, demonstrating the

advantage of combining natural prior and design knowledge. We

also visualize the selection maps of DC and ours in Figure 15. As

can be seen from the results, our model can localize a more suit-

able region than theirs based on semantic contents [Zhang et al.

2017b]. It is worth noting that the local hints network serves a dif-

ferent purpose from ours, i.e., finding colors for a given location

instead of locations for a given color. To compute a selection map

with their approach, we need to evaluate the probability of the
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Fig. 12. Region selection performance compared with baselines, image

segmentation (SCG) [Arbeláez et al. 2014], semantic image segmentation

(SSS) [Aksoy et al. 2018], saliency detection [Liu et al. 2018], and priors

derived form deep colorization (DC) [Zhang et al. 2017b].

target color at each pixel. Their method becomes computationally

prohibitive for high-resolution images.

Besides correctness, compactness of the predicted region mask

is also one of the main considerations that will have a large im-

pact upon further recoloring. However, we find that it is non-

trivial to obtain a compact region with the compared methods.

For example, in the first row of Figure 13, both semantic segmen-

tation (SSS) and saliency detection (Saliency) methods cover the

ground-truth region well, but tend to generate a larger mask con-

taining multiple regions with different color distributions (i.e., the

whole person is selected). For these methods to achieve a com-

pact region selection, a proper segmentation scale is needed, which

has to be fine-tuned for different images. If there are several dis-

connected but related regions that should be changed together,

then the image segmentation will fail to do so (second row of

Figure 13). In contrast, our method is able to directly predict a

compact local region that is suitable to be changed to the target

color.

6.3.2 Comparison to Novices. We conduct a user study to eval-

uate the performance of our model compared with novices. To this

end, we recruited 24 computer science students with no experience

on photo recoloring. To allow the participants to efficiently spec-

ify a region mask and thus focus on region selection itself, we de-

sign an interface that allows them to click on the image segments

obtained by SCG for region selection. To do this, for each input

image, we pre-calculate a set of image segmentation maps using

SCG, and visualize the scale from 0.3 to 0.9 with an interval of 0.1.

Users can use a slider bar to switch between different segmentation

scales. After a region is selected by a participant, we recolor the se-

lected region with the target color to provide a real-time feedback

to him/her.

Each participant was required to complete 17 design cases ran-

domly selected from our test dataset. Each design case was per-

formed by three different participants. We only ask them to choose

the most suitable region for each design case. We also recorded the

time spent by the participants for each design case.

We show accuracy (at a IoU threshold of 0.5) per participant

and average accuracy on the test dataset in Figure 16(a). Our

method outperforms most of the novices. The variance of accu-

racies among novices is quite large, and some participants have

poor performance. In addition, the novices often need to try sev-

eral regions before making a decision, taking over 40 s on average.

In some cases, participants spent more than 3 min to identify a de-

sirable region. Instead, our model can provide multiple suggestions

in a few seconds.

6.3.3 Effect of Learning the Natural Prior. To understand the

function of the natural prior in our region selection model, we

retrain our model with only S2 and S3, with random initializa-

tion, denoted as Ours (w/o NP). We observe that the top1 accuracy

drops from 41.6% to 14.6%. We show a qualitative comparison in

Figure 17(a). By removing the pre-trained stage on the natural im-

age dataset, the selection maps tend to be blurry without region

continuity and may select wrong semantic regions. For example,

in the first row, the model gives higher probabilities to skins than

tomato given the red color, which is unreasonable. This indicates

that pretraining on natural images is necessary for the model to

select regions that will result in natural, semantically plausible re-

coloring and provide a good starting point for further learning de-

sign knowledge.

6.3.4 Effect of Learning the Design Knowledge. To validate the

importance of training with graphic design data, we retrain the

model by skipping the S2 and only train S3 on top of S1 to see

whether the selection map and region mask accuracy benefit from

fine-tuning with graphic design data (Ours w/o DK). After remov-

ing fine-tuning on the selection map, the accuracy decreases to

only 5%. To find out the reasons for this huge performance drop,

we visualize the selection maps before and after fine-tuning on

graphic design data in Figure 17(b). From the results (first and third

rows) we can see that, with design knowledge, the model tries to

emphasize more on salient regions when there are multiple equal

probability regions (in Ours w/o DK). This conforms with our com-

mon sense that people are more sensitive to salient regions and

adjusting the color of these salient regions can magnify the color

effects. Besides, the selection map becomes more discriminative af-

ter involving design knowledge. In this way, the region proposal

sub-net is easier to find the regions designers prefer, thereby in-

creasing the accuracy on the test dataset.

6.3.5 Effect of Mask Sub-net. We retrain with all three stages

but remove the mask sub-net from S2 to see its advantage, de-

noted as Ours (w/o mask). All other settings remain the same as

in Section 4.4. To calculate the accuracy after removing the mask

sub-net in Ours (w/o mask), we directly use the proposal bound-

ing box to crop the selection map as the predicted mask. With-

out the mask sub-net, top-1 accuracy drops from 41.6% to 22.6%,

indicating the importance of the mask sub-net. After visualizing

the selection maps in Figure 17(c), we find that the mask sub-net

also helps refine the selection map by localizing more compact and

well-aligned regions. This is because the mask sub-net and selec-

tion map sub-net share the same feature maps, and the mask sub-

net forces the feature maps to encode more low-level details for

predicting a more suitable mask, which in turn benefits the selec-

tion map prediction.
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Fig. 13. Comparison of our predicted regions with those generated by baselines, novices and designers. We recolor the regions selected by novices with the

pure target color for visual comparison. Photo courtesy of Unsplash users An Chi Tai, Annie Spratt, and Hipster Mum and Pexels user Dalila Dalprat.

Fig. 14. Results of our region selection model with multiple suggestions. Photo courtesy of Pexels user Athena.

Fig. 15. Selection maps predicted by our network trained on natural im-

ages. For comparison, we create a baseline method using the local hints

network in deep colorization [Zhang et al. 2017b].

6.4 Evaluation of Recoloring Network

We compare our recoloring network with two kinds of baselines:

a traditional color propagation [Levin et al. 2004] and a deep

colorization method [Zhang et al. 2017b]. For the stroke-based

method, we use the target color to draw strokes within the se-

lected region and original colors for the other regions. The results

are shown in Figure 18. With only a single color, the colors within

the mask region are flat and less vivid, although we have manually

added a lot of strokes.

For the deep colorization model, to adapt to our recoloring task,

we use the original color as hints for non-selected regions. We use

the target color as a color hint on each pixel inside the selected re-

gion in the Dense mode, and randomly select 20 points in the Sparse

mode. Figure 18 shows the results. In the Sparse mode, the hint

points need to be manually given and carefully distributed within

Fig. 16. Results of the user study. (a) Per-user accuracy compared with

our average accuracy. The mean accuracy of novices is show as the blue

dashed line. (b) Statitsics of the average time that novices spend on each

design case, visualized in a box plot.

the selected region. Otherwise, the target color may not be prop-

agated uniformly in the selected region. When the hint points are

given in the Dense mode, the model may directly copy the target

color into each pixel without much modification. Both modes can-

not propagate the target color correctly near the mask boundary.

With the help of transition region in the recoloring network, our

method can naturally propagate the color near the mask bound-

ary without generating artifacts. Note that all the baselines require

more or less human inputs and suffer from artifacts near the region

boundary, while our recoloring model can achieve natural results

automatically.

We also compare our recoloring results with those generated by

designers qualitatively in Figure 13. Both the designers and our

method can propagate target colors naturally in the selected re-

gions. Note that our results are very close to what the designers

produce, although some subtle color differences can be observed.

Since the perception of color naturalness varies across different
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Fig. 17. What does our region selection network learn? We show selection maps predicted by variants of our model. (a) Training with the natural prior

helps the model locate semantically meaningful regions for the target color, and provides a good starting point for further learning design knowledge. (b)

Training with the design knowledge helps the model generate more discriminative selection maps, reducing the ambiguities in region selection. (c) Training

with the mask sub-net is helpful to predict more compact and well-aligned regions. Photo courtesy of Unsplash users Justin DoCanto, Anh Nguyen, and

Anthony Melone.

Fig. 18. Comparison between traditional stoke-based color propagation method [Levin et al. 2004], deep colorization [Zhang et al. 2017b], and our recoloring

network. To adapt deep colorization model to the recoloring task, we copy the pixels of the original images outside the mask as hint points. In Sparse mode,

we randomly sample 20 hint points colored as the target color within the mask. In Dense mode, we treat each pixel within the mask as hint points colored by

the target color. Our recoloring network propagates the target color more naturally, especially near the boundary. We show closeups of the results generated

by Zhang et al. [2017b] (the Dense mode) and our method on the right. The original images are taken from previous works [Chang et al. 2015; Kim and Suk

2018; Tan et al. 2018].

people, the designers and our model (learned from data by different

designers) may tweak the target colors in slightly different ways to

make the entire images look natural, which causes the differences.

To understand the roles of the GAN loss and the boundary re-

gion. We compare our full network with its two variants: one

trained without the GAN loss in Equation (8) (w/o GAN), one with-

out dropping out transition regions in the input color (w/o tran.).

We show the results in Figure 19. After removing the GAN loss, the

model tries to directly copy the target color to the selected region

with less variation on different textures, which makes the results

look very offensive and unnatural. After removing the transition

region, the colors fail to propagate naturally near the boundary.

With the help of the GAN loss and transition region, our recolor-

ing model learns to fill the selection regions with more realistic

colors that are coherent with the contexts.

7 CONCLUSIONS AND FUTURE WORK

In this article, we propose a selective region-based photo recol-

oring approach for graphic designs, which can automatically and

naturally adjust the colors of input photos to match the target col-

ors from the graphic designs. To address the main challenge of se-

lecting appropriate regions to be recolored to the target colors, we

propose a region selection model, which is trained on both natural

images and graphic designs. This allows our model to capture both
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Fig. 19. Ablation studies on our recoloring network. The original images

are taken from previous works [Chang et al. 2015; Tan et al. 2018].

Fig. 20. Failure case. Without considering global consistency, the related

regions (buildings/sky and their reflections) may not be selected together.

Photo courtesy of Unsplash user Cristina Gottardi and Tan et al. [2018].

natural prior and design heuristics, and apply them to effectively

predict suitable regions for recoloring at test time. Extensive qual-

itative and quantitative evaluations demonstrate the superiority

of our method over existing photo recoloring works and various

baselines.

Our method still has limitations. First, our model is designed for

finding local modifiable regions without considering global con-

sistency among different semantic regions. Therefore, related re-

gions and objects cross different semantics in an input photo may

not be selected together, and thus will be recolored in different

ways. As shown in Figure 20, the reflections are not selected along

with the objects that cause the reflections (i.e., the building and

sky). We consider solving this problem in the future by enforc-

ing some non-local constraints between regions with different se-

mantics. Second, our model assumes grayscale images as input.

While this makes it possible for us to learn from synthetic data, it

loses color context information that may be important for region

selection. In practice, people sometimes take into account global

color harmonization and local interaction between a color region

and its context to determine what region to modify. To address

it, jointly leveraging our model with existing color harmonization

model [Cohen-Or et al. 2006] would be an interesting direction

to explore further. Third, when using multiple target colors, more

than one color may be mapped to the same region, such as the

balloon in the last example of Figure 1. Our current workaround

is to simply assign the region to the color with the highest mask

confidence score. We will leave more advanced methods to handle

this case as future work. Last, as a data-driven method, the size

of the graphic design dataset may restrict the ability of our region

selection network, and the network may prefer to select regions

that have appeared in the dataset. We believe that a larger dataset

can alleviate this problem, and is possible to be obtained with the

growth of online graphic design communities.

APPENDIX

A THE COLLECTED GRAPHIC DESIGN DATASET

Here are some statistics of our newly collected graphic de-

sign dataset, including distribution of region number per image

(Figure 21), target colors (Figure 22), region size (Figure 23), and

region location (Figure 24).

Fig. 21. The distribution of the number of selected regions per image in

our collected graphic design dataset.

Fig. 22. The distribution of target colors, represented as ab values in the

CIE Lab space.

Fig. 23. The distribution of region sizes.
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Fig. 24. Spatial distribution of selected regions. The intensity map is ob-

tained by rescaling all the designs into squares of the same size and then

averaging the scaled binary segmentation masks of all the selected regions.

It specified the likelihood a region appear at each location, with higher in-

tensities indicating higher likelihood.
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