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Abstract Forecasting scene layout is of vital importance in
many vision applications, e.g., enabling autonomous vehi-
cles to plan actions early. It is a challenging problem as it
involves understanding of the past scene layouts and the di-
verse object interactions in the scene, and then forecasting
what the scene will look like at a future time. Prior works
learn a direct mapping from past pixels to future pixel-wise
labels and ignore the underlying object interactions in the
scene, resulting in temporally incoherent and averaged pre-
dictions. In this paper, we propose a learning framework
to forecast semantic scene layouts (represented by instance
maps) from an instance-aware perspective. Specifically, our
framework explicitly models the dynamics of individual in-
stances and captures their interactions in a scene. Under
this formulation, we are able to enforce instance-level con-
straints to forecast scene layouts by effectively reasoning
about their spatial and semantic relations. Experimental re-
sults show that our model can predict sharper and more
accurate future instance maps than the baselines and prior
methods, yielding state-of-the-art performances on short-
term, mid-term and long-term scene layout forecasting.
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1 Introduction

Human beings are remarkably capable of forecasting the fu-
ture states of a scene given past observations of it. We can
do this mainly because we have built a mental model of
scene dynamics by observing many examples of how objects
move and interact in real-world scenes. A machine equipped
with a similar capability to predict what a scene will look
like in the near future will enable intelligent agents to plan
their actions early based on past observations. For example,
self-driving cars and social robots need to predict the future
in order to plan ahead and react to the environment more
quickly [6,34].

Developing machines’ capability to anticipate the fu-
ture is very challenging, as it requires understanding vari-
ous appearance changes, complex motion dynamics, and di-
verse object interactions in a scene. Towards this objective,
there has been a line of research on forecasting scene lay-
outs (represented by semantic segmentation maps [25,32]
or instance maps [24]) given the observed past frames in an
input video. However, all these works adopt an end-to-end,
per-pixel prediction framework of an existing segmentation
model, which is extended to the temporal domain to directly
map past pixels to future pixel-wise semantic labels. Such a
design would lead to blurry and averaged predictions, where
instances have degraded shapes and may disappear unex-
pectedly, especially for long-term prediction. It may also
suffer from temporally incoherent predictions of instance
shapes and locations, if partial occlusions are present in the
input frames. Consider Figure 1 as an example. The shape
of the car (marked in green) generated by the state-of-the-art
F2F model [24] is inaccurate compared to that of the ground
truth. In addition, the car marked in yellow is missing due to
the lack of temporal consistency.

Our key observation is that to anticipate what a scene
will look like at a future time, human beings would typi-
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Fig. 1 Scene layout forecasting. Given four past image frames
It—3A,1t—2A,It—11, 1) of a video as input (top row), our goal
is to predict a future instance map I; 4, A, Where nA is the number
of frames ahead in the future (bottom row). State-of-the-art methods,
e.g., F2F [24], tend to predict inaccurate object shapes and temporally
incoherent objects, especially over a long time span. In contrast, our
model can predict a more accurate and sharper future instance map
over different time spans (see Section 4.4).

cally recognize and localize individual instances in the scene
first, and then reason about their spatial and semantic in-
teractions to make the prediction. Inspired by this observa-
tion, rather than performing direct pixel-level prediction as
in existing works, we address the problem from an instance-
aware perspective. We model the dynamics of individual in-
stances separately and reason their interactions with each
other explicitly. By doing so, we can enforce constraints at
instance-level, which help produce sharper instance shapes
and temporally stable predictions. We can also predict plau-
sible instance motions due to the explicit modeling of subtle
instance-to-instance interactions.

Based on the above idea, we propose a separation and
composition framework to predict future instance maps (i.e.,
scene layouts) from past image frames. As shown in Fig-
ure 2, unlike pixel-level prediction, our framework explic-
itly models the dynamics of individual instances and the
relations among them in a scene. Given a sequence of im-
age frames, we first generate a sequence of consistent in-
stance maps by an off-the-shelf instance segmentation net-
work [12]. The instance maps along with the correspond-
ing image frames are separated in an instance-wise manner,
generating a set of instance-wise representations. Each rep-
resentation captures the structure and appearance dynamics
of an instance over the time span of the input frames. The
framework then learns per-instance features by encoding the
instance-wise representation and modeling its spatial and se-
mantic relations with other instances via an instance relation
module. The learned per-instance features can then be used
to predict instance layouts, which are finally composed to
form the predicted future instance map. Figure 1 shows that
our approach can generate much more accurate scene lay-
outs, compared with the state-of-the-art methods.

To evaluate the performance of our method, we use the
popular Cityscapes dataset [5] for short-term, mid-term and
long-term future instance map predictions. Extensive quan-
titative and qualitative comparisons are performed against
the baselines and state-of-the-art methods. Results show that
our method is able to forecast sharper and more accurate
scene layouts, yielding state-of-the-art performances.

In summary, the main contributions of this work are:

— To the best of our knowledge, we are the first to propose
an instance-aware approach to address the scene layout
forecasting problem. Our approach is able to produce
sharp instance shapes and plausible instance motions.

— We propose a novel separation and composition frame-
work for predicting future instance maps. It separately
models the dynamics of individual instances and explic-
itly captures their interactions in a scene.

— We extensively validate our method and show that
it achieves state-of-the-art performances in short-term,
mid-term and long-term future predictions.

2 Related Work

Future forecasting, though challenging, is important to many
real-world applications such as autonomous driving. Learn-
ing to forecast the future has received a significant amount
of attention in the computer vision community. There has
been much research effort on this problem by parameteriz-
ing the future in different forms, such as object movement
trajectories [39], event categories [14], motion fields (opti-
cal flow) [37], human body poses [2], human behaviors [11],
and action categories [35,8]. Unlike these works that pre-
dict future object locations, scene layout forecasting needs
to jointly predict object positions, sizes and shapes [25,18,
24]. Thus, all the aforementioned works are not amenable to
our problem. In this section, we focus our discussion on re-
cent works about image frame and scene layout forecasting.

Image Frame Forecasting. There is a large body of
research on predicting raw pixel values of future frames
in a video sequence. Ranzato et al. [30] proposed the first
unsupervised deep model for next frame prediction. Math-
ieu et al. [26] improved the predictions using the adversar-
ial loss and a gradient difference loss to avoid blurry re-
sults. A similar training strategy was employed for future
frame predictions in time-lapse videos [40]. Rather than pre-
dicting unconstrained pixel intensities directly, Vondrick et
al. [36] learned pixel transformation and synthesized fu-
ture frames by transforming pixels from existing frames.
Kwon et al. [21] used a single network to predict future
and past frames retrospectively to enforce the consistency of
bi-directional prediction. Kim et al. [19] proposed an adap-
tive online updating network for future frame prediction. All
these approaches suffer from blurry and averaged predic-
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Fig. 2 Illustration of the existing pixel-level prediction (left) and the proposed instance-aware modeling (right) for scene layout forecasting. Pixel-
level prediction directly maps the input pixels to per-pixel semantic labels, while instance-aware modeling considers each instance separately and
enforces spatial and temporal constraints at instance level. Ry, is the k-th instance representation, and Ly, is the future layout of the k-th instance.

tion, due to the difficulty of pixel-level prediction. In addi-
tion, pixel-level fine-grained predictions are often not nec-
essary for intelligent systems to make decision. In contrast
to these works that predict pixel intensities/colors, we fo-
cus on predicting a mid-level representation (i.e., instance
maps). Our work is similar in spirit to the works on future
frame synthesis based on motion decomposition [28] and
foreground-background separation [33]. However, instead
of decomposing motion or separating the foreground and
background, we decompose a scene into instances, model
the interactions among these instances, and then predict a
future layout of the instances.

Scene Layout Forecasting. Our work is in line with a
series of recent works on scene layout forecasting. Instead of
synthesizing (or predicting) pixel values for future frames,
these works aimed to predict future image content in a
more abstract way, i.e., semantic scene layout. Jin et al. [17]
trained a model to predict the semantic segmentation of the
next frame from the preceding input frames. Luc et al. [25]
directly trained a single network by taking several segmen-
tation masks as input to predict the semantic segmentation
of a future frame. Nabavi et al. [31] proposed a LSTM to
model the temporal information of the input frames and pre-
dicted the semantic segmentation of a future frame. Hu et
al. [15] proposed a deep learning model to jointly predict
ego-motion, static scene, and the motion of dynamic agents
in a probabilistic manner. While the above approaches are
relevant to scene layout forecasting, they focus on produc-
ing object category labels instead of instance labels. Jin et
al. [18] further divided a scene layout into three groups and
proposed a multi-task learning framework to jointly predict
optical flow and semantic segmentation. However, it only
considered three groups in the scene and required optical
flow annotations, which are difficult to obtain.

Notably, our work is closely related to [24], which also
predicted future instance maps. They first predicted the fea-
tures for a future frame, and then integrated the predicted
features into the Mask R-CNN pipeline [12] for instance
segmentation. However, their method still follows the tradi-
tional instance segmentation framework without explicitly
accounting for instances. Graber et al. [10] further extended
the future instance map prediction task to future panoptic
segmentation by learning the dynamics of background stuff

and foreground objects. However, they do not consider the
interactions among instances. In contrast, our framework
models individual instances and captures their spatial and
semantic relationships explicitly. Our experiments in Sec-
tion 4.4 show that while previous works tend to average
different object classes into blurry future predictions, our
method can preserve the properties of individual objects bet-
ter due to its ability to exert instance-level control over the
predictions, especially for mid-term and long-term predic-
tions.

3 Approach

The scene layout forecasting task is to predict instance
shapes, sizes as well as motions in a scene at a future
time. The inputs to our method include four image frames,
Ii—sar = {li—3a,It—2a,It—a, It} (where A denotes the
time interval), which capture the appearance dynamics of a
scene. Our goal is to predict a future instance map §t+n A
(where n is the number of time intervals ahead in the future)
that describes the semantic and structural information of the
scene at time step ¢ + nA.

Figure 3 shows our framework. It has three main tasks.
First, after segmenting the input frames I;_3A.; into a se-
quence of instance maps S;_3a.; using Mask R-CNN [12],
we separate I;_3a.; and S;_3a.; in an instance-wise man-
ner to generate disjoint sets of instance-wise frames, each
of which captures the structure and appearance dynamics
of an instance over the input time span 3A. We also seg-
ment the background from the input frames and the instance
maps into a set of background frames. Second, we use back-
ground and instance encoders to extract background fea-
tures and per-instance features, respectively, from the de-
composed maps and frames. The features of each instance
are then refined by the instance relation module to model its
relation with other instances and the background. Third, we
feed the refined instance features to LayoutNet to help pre-
dict the layouts of individual instances, which are then com-
bined by a composition module to form a predicted scene
layout. A sequence of future scene layouts can be generated
by applying the framework recursively. We present the de-
tails of these three tasks below.
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Fig. 3 We propose an instance-aware separation and composition framework for scene layout forecasting, by modeling instances and their
relations. Given a sequence of input frames I _3 ., we use Mask R-CNN as a pre-process to obtain a sequence of instance maps St—_3A:¢.
Ii_3A:¢ and Sy_3 .+ are decomposed into instance-wise representation [2; and background representation Ry 4. These representations are then
embedded into per-instance features and updated by the instance relation module, resulting in new features f; that capture interactions among the

instances. f;, are then used to predict instance layouts L, which are finally composed to output a future instance map.

3.1 Instance-wise Separation

In order to carry out future instance map prediction in an
instance-aware manner, we first decompose the input frames
and instance maps into a set of instance-wise representa-
tions. As shown in Figure 3, for each instance ¢, we obtain its
masked instance maps S;_5 4., and masked frames I} 5 ..,
by tracking the instance across the frames and zeroing out
the values outside the instance in S;_3.; and I;_3a.;. We
then convert the masked instance maps S;_5 4., to instance-
wise semantic maps §§_3 A.¢ by filling the instance silhou-
ette of each instance map with one-hot encoding of the in-
stance’s category. We concatenate S‘f_:m:t and I} 5., to
construct an instance-wise representation R;. This instance-
wise representation R; captures the structure and appear-
ance dynamics of the instance over the time span 3A. To
model the effect of background contents on the instances of
interest, we also consider the background (non-instance re-
gions) as an instance by assigning it a distinctive label, and
create a background representation 2y, similarly.

Note that since the instance maps are generated by ap-
plying Mask R-CNN to each input frame independently,
there is no inherent correspondence between instances
across different frames. Thus, before the separation step, we
track each instance across different frames using a simple
tracking method as described in the dataset processing part
of Section 4.2.

3.2 Feature Embedding

Given the background and instance-wise representations,
we use a background encoder (BKG encoder) and an in-
stance encoder (Insta encoder) to extract background fea-
tures and instance features that encode structure and appear-
ance dynamics of the background and the instances, respec-
tively. However, since each instance would likely plan its
future states according to the behaviors of other instances
in a scene, encoding each instance alone may not capture
the subtle interactions among the instances, which is cru-
cial to predicting its future state. To address this problem,
we introduce an instance relation module to refine the fea-
tures of each instance by modeling its spatial and semantic
relation with other instances in the scene. Taking as input
the background and instance features { fiq, f1, f2,.- ., fn}
the relation module outputs the refined instance features
{f1, f5,..., fr} as the final embedded instance features.

Instance Relation Module. To predict the future state of
an instance, the states of some neighboring instances might
be more relevant than the others. Hence, we adopt an atten-
tion mechanism [22] to incorporate relational information
into the features of each instance. Note that our framework is
general, and any differentiable relation module can be used
in principle. Specifically, the refined features of instance
are a linear combination of the features of the other instances
and the background as:

=1+ - (Walk)) + e (Woafg), )]
J#i
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Fig. 4 Details of the LayoutNet module (top) and the composition
module (bottom).

where W,,; and W, are learnable weight matrices. €;; indi-
cates the relative importance of instance j to i. Ei-)g indicates
the relationship of instance 4 to the background. Both ¢;; and
Efg are attention weights that can be computed dynamically
via an attention mechanism:

eij = maz(0, Wo fi + We fj), 2)
er? = max(0, Wic(fi + frg)), 3)

where Wy, Wp and Wg are learnable weight vectors
that project instance features f; and f; to scalar values.
max (0, x) is used to ensure the attention weights > 0, with
0 indicating no interaction with instance 7. In this way, the
refined features of each instance will encode not only the
information of the instance itself but also the contextual in-
formation from other instances and the background.

3.3 Layout Prediction and Composition

Having generated the embedded features for individual in-
stances in the scene, we use them to predict an instance
map that describes the semantic layout of the scene at a fu-
ture time, by first predicting a layout for each instance and
then composing all the instance layouts to output a future
instance map.

Layout Prediction. For each input instance, we use its
features to compute an instance layout map by predicting a
shape mask and a bounding box using the LayoutNet mod-
ule [29], which is illustrated in Figure 4(top). We note that
the moving patterns of different instances in a scene are dif-
ferent, depending on many factors such as the size of each
instance and its distance from the camera. In particular, we
have empirically found that directly predicting the future
layouts of small instances cannot give satisfying results. It
is possibly because the motion magnitudes of small objects
are often very small. This may result in the loss function be-
ing dominated by those instances with large motions, caus-
ing the model to generate unreasonable predictions for the
small instances.

To address the above problem, we train the LayoutNet
module to additionally estimate how confident the network

is in predicting the layout map of each instance. A low con-
fidence score indicates that the network prediction result is
unreliable. In particular, the input to the LayoutNet module
is the instance-wise features fi, which are fed into a shape
regression branch to predict a soft binary shape mask m; and
a position regression branch to predict a bounding box of the
instance with five parameters (z;, y;, w;, ki, p;). (24, y;) re-
fer to the center location of the box, (wj;, h;) refer to the
width and height of the box, and p; is the confidence score
of the box. Note that both rigid and non-rigid objects can
be represented by the predicted shape masks. The generated
shape is then warped to the position of the corresponding
bounding box using bilinear interpolation [16], generating a
layout map Ly that represents the shape, size, position and
confidence score of the instance in the scene. For the in-
stances with low confidence scores, rather than predicting
with the object layout network, we directly estimate their
layouts using their motion trajectories in the instance maps.
In particular, for each low-confidence instance, we compute
an average scaling factor and movement vector based on the
corresponding instance masks across all the input instance
maps. We then apply the scaling factor and movement vec-
tor to the mask of the instance in the last instance map to
obtain its future layout map.

Layout Composition. Given all the instance layout
maps {L1,La,..., Ly}, the composition module aims to
compose them to generate a coherent scene layout in the
form of an instance map. However, partial occlusions among
the instances may occur during the composition process. If
two instances are found to overlap each other, we first de-
termine their front-back order. Inspired by the element com-
position process in [27], we first train an ordering network
to indicate if an instance should be in front of another. The
inputs to the ordering network are two instance layout maps,
and the output is a binary label that indicates if an instance is
on top of another when they are composed together. To train
the network, the ground truth order is obtained based on the
depth maps from Cityscapes. Here, the network focuses on
learning the prior that explains the instance-instance depth
relations in natural scenes. Based on the outputs from the
ordering network, we then composite these instances onto
a single canvas, resulting in a scene layout. Note that some
artifacts like holes and unreasonable shapes may still exist
after the composition process. We further refine the com-
posed scene layout via a cascaded refinement network [4],
to remove these artifacts.

3.4 Training

We first train the ordering network to obtain the relative or-
der of two instance layout maps. We then train our entire
network end-to-end by minimizing a multi-task objective.
In particular, for instance shape prediction, we use a binary
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cross entropy loss to penalize the pixel-wise difference be-
tween each predicted shape mask m and the corresponding
ground truth 7 as:

Lshape = — Z Zmzy log My y+(1—1y,y) log(1—mg ),

z Yy

“)

where m, ,, is the presence probability of an instance at spa-
tial location (x, ).

For instance bounding box prediction, we denote the pa-
rameters and the confidence score of the predicted bounding
box as b and p;,, ¢, respectively. We define the L1 loss be-
tween b and the corresponding ground truth b as:

Lppos :pinstHb_BHl- @)

Since we do not have access to the ground truth confi-
dence score, we apply a cross entropy loss with a constant
target label of 1 on p;,, s as:

Lscore = - IOg(pinst)~ (6)

This will encourage the network to minimize the loss in
Eq. 5, while allowing for a certain amount of relaxation to
discount the instances with low confidence scores.

In addition, we also make use of adversarial learning [9]
to encourage the generated instance map to appear realistic.
Specifically, we train our model adversarially against a dis-
criminator network D, which attempts to classify an input
instance map as real or fake by minimizing the objective:

Ladv = Em’\‘pv‘eal logD(I) + Ex’\‘pfake log(l - D(x))’ (7)

where  ~ p 4k are predicted instance maps. & ~ Pyeq; are
the ground truth instance maps.
In summary, we train our model with a total loss:

L=« Z Lihape+ﬂ Z Lébox +7Ladv+< Z Licore’ (8)

where «, 3, v and ( are the loss weights.

4 Experiments
4.1 Implementation Details

Training. The proposed framework is implemented under
the Pytorch framework. The network parameters are initial-
ized using the truncated normal initializer. We downsample
the original frames to a resolution of 128 x 256 in both train-
ing and testing stages. We optimize the parameters of our
model by the Adam optimizer [20] with an initial learning
rate of 0.005, 87 = 0.9 and B> = 0.9999. The batch size is
set to be 8. We empirically set the loss weights «, 3, v and

(to1,1,1,0.1. Following [25], we train our model by sam-
pling four frames with an interval of 3 frames (i.e., 0.17s).

Inference. We apply our model for three types of time
spans: (1) Short-term: predicting the 3rd frame after ¢, i.e.,
St43 (up to 0.17s); (2) Mid-term: predicting the 9th frame
after ¢, i.e., Syy9 (up to 0.55s); (3) Long-term: predicting the
27th frame after ¢, i.e., S¢127 (up to 1.65).

We only train our model for short-term prediction and
adopt a recursive approach as in [25] for mid-term and long-
term prediction, by predicting a future instance map given a
temporal window of 4 past instance maps. Initially, the win-
dow only contains the input instance maps and the corre-
sponding image frames. In later iterations, it contains the in-
stance maps predicted from the previous iterations. Note that
we also need to obtain the corresponding masked frames be-
fore passing them to the network. When using a predicted in-
stance map as input to our model, for each instance on it, we
estimate its masked image frame by masking the last input
image frame based on the spatial transformation between its
current bounding box and that in the last input frame. We
empirically set the threshold of the confidence score to 0.3.
When the confidence score of an instance is lower than 0.3,
we use the linear motion strategy described in Section 3.3
to obtain its future layout. Otherwise, we use the network to
predict the future instance layout.

4.2 Experimental Setup

Dataset. Following existing works [25,24,18], we use the
Cityscapes dataset [5] for training, which consists of ur-
ban scene videos recorded from a car while driven on the
street. It contains 2,975 training, 500 validation and 1,525
test video sequences. Each video has 30 frames of reso-
Iution 1024 x 2048. However, the ground truth instance
map annotation is only available for the 20th frame of each
video sequence in the dataset. To get the instance maps
for all the frames, we use the Mask R-CNN model pre-
trained on COCO [23] and fine-tuned on Cityscapes using a
ResNet-50-FPN backbone [13]. Given the image frames in
the dataset, the predicted instance segmentations from Mask
R-CNN are regarded as the ground-truth annotations to su-
pervise our network.

The instance label IDs may not be consistent across
frames due to the independent application of Mask R-CNN
on each frame. To perform instance-level decomposition
(Section 3.1) robustly, we need to filter out unreliable in-
stances and build correspondences of the instances across
frames. To this end, we propose a simple tracking method
by combining multiple cues [38], including semantic consis-
tency, spatial correlation and detection confidence. Given a
sequence of 5 frames (4 inputs and 1 output), assuming that
we already have a set of existing instance IDs denoted as
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{2, a new instance can be assigned to an instance ID or dis-
carded based on its confidence score. Specifically, we com-
pute the confidence score v; for instance 7 at frame ¢:

v = max;[log s; + IoU(bL, b7) + 5(c}, )], )

where s} is the detection score of instance i from Mask R-
CNN. bi and ¢! are its bounding box and category, respec-
tively. IoU(+) is the IoU between two instance bounding
boxes, and J(-) is the Kronecker delta function. It is equal
to 1 when ¢; and ¢, are equivalent, and O otherwise. If v§
is larger than a threshold V;;, we assign it an existing ID j
that maximizes the value of vi in Eq. 9, and a new ID oth-
erwise. We record the number of times that the confidence
score of each instance ID is higher than threshold V. This
number represents how many times the instance ID appears
across different frames. We iteratively update this set of in-
stance IDs until all the instances have been processed. Fi-
nally, those instances that appear in less than 3 frames will
be discarded.

Evaluation Metrics. Since our objective is to predict ac-
curate positions and shapes of the instances in the future, we
employ the following metrics. We first use the Jaccard in-
dex, i.e., intersection over union (IoU) between the predicted
mask and ground truth mask. We also adopt the contour-
based F-measure [7] to evaluate the quality of the predicted
object shapes. In particular, given the pixel-wise boundaries
of a predicted mask and the ground truth mask, we use a
distance threshold p to define a boundary precision P; and
recall R;. A predicted boundary pixel is regarded as posi-
tive only if it is within a distance of p from any ground truth
boundary pixel. The boundary-based F-measure F; is com-
puted as:

(1+B%) x P x R;
BEx P+ Ry

F; = (10)
where 32 = 0.3 as in [1] to emphasize the precision. It is
worth noting that AP (an evaluation metric used in instance
segmentation) is not applicable in our setting as it is com-
puted by thresholding on IoU and class confidence, while
our model directly predicts the future position and shape of
each instance without predicting its class probabilities.

4.3 Compared Methods

Note that our objective of this work is to predict the fu-
ture state of each instance in the scene (i.e., a future in-
stance map), rather than semantic segmentation as in [32,
33], which do not differentiate between different instances
of each class. Thus, we compare our model with the follow-
ing methods:

— Identity. The instance map for the future frame S;4 A is
copied from the last input instance map S; directly.

— Linear Motion. For each object in the scene, we directly
estimate its average scaling factor and movement vector
from the given instance maps, and apply them to its mask
in the last instance map to get its future instance map.

— Optical Flow. We first compute the optical flow field [3]
from the last two input image frames. We then warp each
instance mask in the last input instance map based on the
inverted flow field on it. For long-term prediction, we
recurrently apply the computed optical flow to the latest
predicted instance map to make the next prediction.

— F2F [24]. This method first predicts a future feature rep-
resentation, and then send it to Mask R-CNN to predict
an instance map of the future.

— Panoptic Segmentation (PS) [10]. This is the state-of-
the art method for predicting the future panoptic seg-
mentation that contains both background stuff and fore-
ground objects. For fair comparison, we compare our
results with the foreground object prediction results in
[10].

— Oracle. We also report the result of Mask R-CNN as a
performance upper bound of our method, which is ob-
tained by running Mask R-CNN on the future frames
whose instance maps are to be predicted (recall that our
model is supervised by the instance maps predicted by
Mask R-CNN).

4.4 Results

Qualitative Results. We first show visual comparison with
the existing methods in Figure 5 and Figure 6. For short-
term prediction shown in Figure 5, we find that Optical Flow
tends to produce artifacts around the instance boundaries,
F2F may introduce new instances that do not exist in the in-
put scenes, and PS may generate inaccurate instance shapes,
sizes and positions. Consider Figure 5(a) as an example. Op-
tical Flow produces some artifacts on the cars due to the
inaccurate flow field estimation. Although F2F can predict
plausible shape and position of the car in the red box, it in-
troduces a truck unexpectedly inside the green box, which
breaks the temporal coherency. The main reason is that its
result is based on a predicted high-level, abstract future rep-
resentation, which is unable to guarantee instance-level tem-
poral consistency between the input frames and the output.
In addition, without considering the relationships among the
instances, PS generates inaccurate shape, size and position
for the car in the red box. In contrast, our method can pre-
serve the instances in the input frames better and generate
temporally more coherent predictions. This is because our
method considers each instance separately and models the
interactions among these instances explicitly.

Mid-term and long-term predictions are much more
challenging than short-term prediction, as the uncertainty
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First & last input frames Optical Flow

F2F [24]

PS [10] Ours GT

Fig. 5 Qualitative results for short-term prediction. In each example, we show the first and last image frames of a four-frame sequence. We then
show the instance map prediction results of an optical flow-based method (Optical Flow), F2F [24], PS [10]), our method (Ours), and the ground

truth (GT).

increases when the time span becomes larger. For the mid-
term prediction shown in Figure 6(a-c), in comparison to
other methods, our method can predict sharper object shapes
and more accurate object positions. For example, for the car
inside the green box in Figure 6(a), Optical Flow predicts
a wrong position, hiding it behind another car, while F2F
produces a blurry shape. Although the result of PS is better,
the shapes of the two cars are still worse than those of our
method. For long-term prediction shown in Figure 6(d), we
can see that Optical Flow fails miserably by having many
instances diminished, due to the challenging task of estimat-
ing the motion field over a long period of time. F2F and PS
tend to generate “average” predictions, where the shapes of

the instances degrade considerably (e.g., the cars inside the
green box). In contrast, our method can still give clear in-
stance shapes and plausible instance positions.

To further investigate the effect of different time spans
(i.e., from t + 3 to t + 9) on the prediction performance,
we show the layout predictions of individual instances in
Figure 7. We can observe that the car shapes predicted by
our method closely match with the oracle [12], while Optical
Flow, F2F and PS tend to produce degraded car shapes over
time. These results confirm the distinctive advantage of our
instance-aware modeling over the pixel-level prediction in
generating high-quality object shapes.
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First & last input frames Optical Flow F2F [24]

PS [10]

Ours GT

Fig. 6 Qualitative results for mid-term (a-c) and long-term (d) predictions. In each example, we show the first and last image frames of a four-
frame sequence. We then show the instance map prediction results of an optical flow-based method (Optical Flow), F2F [24], PS [10], our method

(Ours), and the ground truth (GT).

Quantitative Results. Table 1 shows the quantitative re-
sults over different time spans. Our method performs signif-
icantly better than the baselines, F2F and PS. For short-term
prediction, F2F works well and is close to our method on
the Jaccard index. Predicting the immediate future is a rel-
atively easier task since the pixels of immediate future are
strongly correlated with the past pixels. Thus, pixel-level
prediction models can give good results, as demonstrated by
the reasonably good performances of Identity and Optical
Flow, along with the modest performance gaps between the
Oracle and different methods. However, it is worth noting
that our results have consistently better boundary accuracy
(i.e., higher F-measure values) across different time spans,

which confirms the distinctive advantage of our instance-
wise framework in instance shape prediction. For mid-term
and long-term predictions, despite the significant perfor-
mance drops of all the methods, PS performs better than F2F
and other baselines by modeling the motion and appearance
history of individual instances. However, our method still
outperforms PS by a large margin. This demonstrates the
superiority of our method, particularly for a relatively long
time span.

We further investigate the performances of our method
on some individual object categories. In Table 2, we show
quantitative results on car (a rigid object) and person (a
highly deformable object). Our method consistently outper-
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First input frame Last input frame

Input

First input frame

Last input frame

t+3

t+6

t+9

Optical Flow  F2F [24] PS [10] Ours

Oracle [12]

Optical Flow F2F [24] PS[10] Ours Oracle [12]

Fig. 7 Layout predictions of individual instances by different methods over different time spans. For each case, we show the first and last RGB
frames of a four-frame sequence along with their respective instance maps computed by [12]. We show the instance layouts predicted by an optical
flow based algorithm (Optical Flow), F2F [24], PS [10], our method (Ours), and oracle [12] at time steps ¢ 4+ 3 (2nd row), ¢t + 6 (3rd row) and

t + 9 (4th row).

Table 1 Quantitative results of predicting instance maps for short-term, mid-term and long-term future. The best results are highlighted in bold.

Short-term Mid-term Long-term

Method Jaccard index?  F-measuref | Jaccard index?  F-measure? | Jaccard index?  F-measure?

Oracle [12] 64.7 60.3 64.7 60.3 64.7 60.3

Identity 45.7 28.1 29.1 7.6 6.9 2.9

Linear motion 53.7 342 32.6 9.2 7.5 3.1

Optical Flow 58.8 39.8 414 13.2 10.6 7.7

F2F [24] 61.2 419 41.2 20.3 15.8 10.3

PS [10] 60.3 40.8 42.1 22.9 17.7 13.2

Ours 61.3 423 42.8 24.3 19.2 15.1

Table 2 Quantitative results on car and person. The best results are highlighted in bold.
Short-term Mid-term Long-term
Jaccard index? F-measuret Jaccard indext F-measure Jaccard index? F-measuret

Method Car  Person | Car Person | Car Person | Car Person | Car Person | Car Person
Identity 533 38.6 33.7 20.1 355 21.9 10.5 4.9 8.1 53 34 2.1
Linear Motion | 61.2 47.3 40.7 28.3 39.8 25.1 12.9 59 9.7 6.8 39 2.0
Optical Flow 65.9 529 46.1 332 47.9 36.2 17.1 9.6 13.4 7.9 9.5 5.8
F2F [24] 68.1 54.8 48.3 35.7 48.3 36.1 254 15.8 18.3 13.1 12.7 7.8
PS [10] 68.3 54.5 49.1 35.6 48.9 36.8 27.6 17.1 20.1 14.8 143 8.6
Ours 68.7 54.3 49.8 359 49.3 371 29.2 18.2 234 15.7 17.9 10.9

forms the other methods on both categories. We note that
our performance gains are more pronounced on rigid ob-
jects (i.e., car) than on non-rigid objects (i.e., person), as
non-rigid objects can deform in numerous ways, making it
difficult to predict their motions and shapes accurately.

When predicting the future layout of an instance, we
chose to threshold on its confidence score to determine if we
use the network or a naive linear motion predictor for pre-

diction. Here, we experiment with different confidence score
thresholds to study the effectiveness of this design choice.
When the threshold is set to 0 or 1, we only use our net-
work or the linear motion predictor, respectively, for predic-
tion. When the threshold is in (0, 1), we use the two pre-
diction models simultaneously and determine which one to
use for an instance based on its predicted confidence score.
Figure 8 shows the results. We can see that as the threshold
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Table 3 Results of the ablation study. The best results are highlighted in bold.

Short-term Mid-term Long-term
Method Jaccard index? | F-measuret | Jaccard index? | F-measure? | Jaccard index? | F-measuref
w/o image frames 52.5 41.6 38.9 213 18.8 12.8
w/o background representation 53.4 41.8 39.6 21.8 18.9 135
w/o instance relation module 50.9 40.6 35.2 19.8 12.7 10.1
w/o ordering network 54.8 40.3 40.8 20.6 18.8 11.3
w/o adversarial loss 57.7 41.8 41.9 23.5 18.9 14.3
Our model 61.3 42.3 42.8 24.3 19.2 15.1
Last input frame Ground Truth Ours

Fig. 8 Performance vs. Threshold. We change the confidence score
threshold from O to 1, and use Jaccard index and F-measure to evalu-
ate the performance over different time spans. Higher scores indicate
better performances.

increases from O (i.e., as we add the linear motion predictor
to handle instances with relatively low confidence scores),
the performance improves gradually for all the time spans,
until when the threshold reaches around 0.3 where the per-
formance drops significantly. This confirms the necessity of
our confidence-based dynamic model choice strategy.

4.5 Ablation Study

To investigate the effectiveness of our design choices, we
compare our model with its ablated versions:

— w/o image frames: We use a sequence of instance maps
as input to our model.

— w/o background representation: We remove the back-
ground encoder from our model.

— w/o instance relation module: We remove the instance
relation module from our model.

— w/o ordering network: We remove the ordering network
from our model.

— w/o adversarial loss: We train the model without using
the adversarial loss.

The results of the ablation study are shown in Table 3.
Without utilizing image frames or background representa-
tion, the performance drops. This indicates that the visual
appearances of objects and the background are useful sig-
nals for forecasting scene layouts. When the instance rela-
tion module is removed, the performance becomes worse,

FRY g

Fig. 9 Failure case in short-term prediction. When a scene contains
many people with diverse poses, our model may not be able to predict
plausible shapes due to the inherent ambiguity of predicting the shapes
of highly non-rigid objects.

which implies that modeling instance-instance interactions
is crucial to predicting the future motions of instances in a
scene. In particular, we note that the performance for long-
term prediction drops more significantly without this mod-
ule. This indicates that modeling instance-instance interac-
tions is of particular importance to long-term prediction.
Without the ordering network, the F-measure is affected
more than the Jaccard index. This is possibly because the
incorrect instance order would significantly change some
instance boundaries. Finally, without using the adversarial
loss, the performance also drops slightly. This indicates that
the adversarial training process could help generate instance
maps with more realistic details.

5 Conclusion

In this work, we have studied the problem of forecasting
scene layouts with an instance-aware approach. We have
presented a learning framework to forecast the instance map
of a scene at a future time from past image frames, by ex-
plicitly modeling the motion dynamics of the instances in
the scene as well as instance-instance interactions. Through
extensive experiments, we show that learning with instance-
wise formulation is able to produce more accurate and sharp
predictions, as compared with prior methods, and yields
state-of-the-art performances.

Despite promising results, our method may fail to pre-
dict plausible future shapes for some highly non-rigid ob-
jects in a scene (e.g., people as shown in Figure 9). This is
because these objects can deform in many different ways,
making it very challenging to predict their shapes. A pos-
sible solution to this problem is to group these highly de-
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formable objects according to their semantic labels (e.g.,
people), and design a branch to especially model their shape
dynamics, which can be an interesting future work.
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