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Night-time Scene Parsing with a Large Real Dataset

Xin Tan, Ke Xu†, Ying Cao, Yiheng Zhang, Lizhuang Ma†, and Rynson W.H. Lau‡

Abstract—Although huge progress has been made on scene
analysis in recent years, most existing works assume the input
images to be in day-time with good lighting conditions. In this
work, we aim to address the night-time scene parsing (NTSP)
problem, which has two main challenges: 1) labeled night-time
data are scarce, and 2) over- and under-exposures may co-
occur in the input night-time images and are not explicitly
modeled in existing pipelines. To tackle the scarcity of night-
time data, we collect a novel labeled dataset, named NightCity,
of 4,297 real night-time images with ground truth pixel-level
semantic annotations. To our knowledge, NightCity is the largest
dataset for NTSP. In addition, we also propose an exposure-aware
framework to address the NTSP problem through augmenting the
segmentation process with explicitly learned exposure features.
Extensive experiments show that training on NightCity can
significantly improve NTSP performances and that our exposure-
aware model outperforms the state-of-the-art methods, yielding
top performances on our dataset as well as existing datasets.

Index Terms—Autonomous Driving, Night-time Vision, Scene
Analysis, Adverse Conditions.

I. INTRODUCTION

S
CENE Parsing is an important computer vision task for

many applications, such as human parsing [1], image

editing [2] and autonomous driving [3]. Although a lot of

methods have been proposed, they mainly focus on day-time

scenes. However, as night time and day time cover roughly

about 50% of the time each (averaged over a year), it is

equally important to build vision systems that perform well

at night time, particularly for autonomous driving at night. In

this paper, we address the night-time scene parsing (NTSP)

problem.

When applied to night-time images, existing scene parsing

methods designed for day-time images typically do not per-

form well. We observe that night-time scenes often contain

both over-/under-exposures, which can seriously degrade the

visual appearances and structures of the input images. For
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Fig. 1. Night-time scene analysis. (a) shows an input night-time image, and
parsing results from state-of-the-art methods: (b) FCN-8s [4], (c) PSPNet
[5], and (d) ESPNet [6]. We also show the result by our model (e), and the
ground truth (f). The yellow and blue boxes highlight under- and over-exposed
regions, respectively. The red box highlights the region with a mixture of
under- and over-exposures.

example, Figure 1(a) shows a night-time scene with both over-

exposure (e.g., street lights and car headlights) and under-

exposure (e.g., background and regions around the headlights).

We can see from Figures 1(b–d) that state-of-the-art methods

are not able to address this problem well. First, the building

highlighted by the yellow box blends into the dark background

due to under-exposure, causing it to be difficult to detect.

Second, the texture and structure of the cars highlighted by

the blue box are corrupted due to over-exposure, causing

them to be difficult to segment correctly. Third, the traffic

light highlighted by the red box is difficult to be detected or

segmented correctly due to a mixture of over-/under-exposures.

There are two main challenges to the NTSP problem.

First, large-scale labeled datasets of night-time scenes are not

available. Existing large datasets for scene parsing mainly

contain day-time images, with few or no night-time images

[7], [8], [9]. Models trained on these datasets do not generalize

well to the complexity of night-time scenes. Second, existing

methods do not explicitly model over- and under-exposures,

as they are primarily developed for day-time scenes. However,

as demonstrated in our experiments, explicitly modeling the

exposure is necessary in order to achieve robust performances.

To address the first challenge, we propose in this paper

a new dataset, named NightCity, for the NTSP problem. It

contains 4, 297 real night-time images of diverse complexity,

with pixel-wise annotations. To our knowledge, NightCity

is the largest labeled dataset for NTSP, and is an order of

magnitude larger than existing datasets for NTSP [10]. As

compared with Cityscapes [7], NightCity covers more diverse

and challenging exposure conditions that are typical in night-

time scenes. Our experiments show that NightCity can help

significantly advance the NTSP performance. It can also serve

as a benchmark for evaluating NTSP methods.

To address the second challenge, as we observe that the
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drop in performance when applying existing scene parsing

methods on night-time images is mainly due to the compli-

cated exposure conditions of night-time scenes, we propose an

Exposure-Guided Network (EGNet) to explicitly learn over-

and under-exposure features to guide the NTSP process. Our

model comprises two streams: the segmentation stream and the

exposure stream. The segmentation stream learns to predict the

semantic label map for the input image, while the exposure

stream learns exposure-related features by explicitly predicting

the exposure map and uses the learned features to augment the

segmentation stream via an attention mechanism. Experimen-

tal results show that our model outperforms previous methods,

achieving state-of-the-art performance on night-time images.

In summary, the main contributions of this paper include:

• We propose a large-scale labeled dataset of real night-

time images for the NTSP problem. The dataset will be

made publicly available, to help advance research along

this direction.

• We present an end-to-end exposure-aware NTSP frame-

work, which explicitly learns exposure features to address

the NTSP problem.

• We have conducted extensive evaluations. Our results

demonstrate that our proposed model outperforms the

state-of-the-art methods on night-time scenes.

II. RELATED WORK

A. Scene Parsing.

There are a lot of works proposed for scene parsing. The

performance has been improved significantly in recent years

due to the development of Convolutional Neural Networks

(CNNs). For example, in [11], prior location information at

superpixel level was exploited with CNNs to strengthen object

discriminativity in scene parsing. Multi-level-based methods

[4], [12], [13], [14], [15] were widely used by learning multi-

level features to extract the global context and to preserve

the low-level details. Recently, attention-based methods [16],

[17], [18] have shown promising performances. Fu et al. [16]

adaptively integrated local features with their global dependen-

cies using position attention and channel attention modules.

Huang et al. [19] used a novel criss-cross attention module to

model long-range contextual dependencies over local feature

representations. Choi et al. [20] adopted the height attention

to learn different categories that are distributed at different

heights. Two-stream approaches were also proposed [21], [17].

For example, Takikawa et al. [17] introduced a two-stream

network, with one of the streams explicitly wiring shape

information for scene parsing. Feng et al. [22] transferred

the knowledge of a teacher stream to a student stream via a

pixel-wise similarity distillation module and a category-wise

similarity distillation module, for balancing the accuracy and

inference time.

Many methods are proposed to learn robust object repre-

sentations for scene parsing. Yuan et al.[23] exploited object-

contextual representations by exploring the features of corre-

sponding object classes, to characterize a pixel. Zhu et al. [24]

exploited video prediction models to predict the class labels.

GPSNet [25] was designed to adaptively select receptive

fields while maintaining a dense sampling capability for scene

parsing. Huang et al. [26] proposed a Scale-Adaptive Network

to tackle the varying scale problem of objects. To bridge the

gaps between the domain of (limited) training data and that

of test scenes, some domain adaptation-based methods [27],

[28], [29], [30] were proposed to utilize useful knowledge of

synthetic scenes to enrich the scene representations.

All the above methods achieved state-of-the-art results on

day-time datasets. However, unlike these existing works, we

focus our attention on night-time scenes with poor lighting

conditions in this work.

B. Scene Parsing in Adverse Conditions.

Although most existing works focus on the “normal” sce-

narios with well-illuminated scenes, there are also some works

that address the challenging scenarios. For rainy night scenes,

[31] tried to solve the rainy night scene parsing problem

via transferring day-time knowledge. It collected 226 images

with eight categories. Tung et al. [32] also tried to handle

this problem and proposed 95 annotated night-time images

with three categories. Zheng et al. [33] presented a Fork-

shaped Cyclic generative module, decoupling domain-invariant

content and domain-specific style, to translate the scenes in

adverse condition to images with better visualizations for

parsing. For multiple and mixed adverse conditions, Valada et

al. [34] proposed the convoluted mixture of deep experts fusion

techniques to understand these adverse conditions, including

rain, snow, sunset and night scenes among 13 categories.

WildDash [35] and BDD100K [36] aimed to test segmentation

performances by presenting many kinds of scenarios with 13

and 345 night-time images, respectively. Sakaridis et al. [10],

[37] proposed guided curriculum model adaptation to solve

the night-time semantic segmentation problem, with a small

dataset of 151 night-time images. Recently, Wu et al. [38]

proposed an unsupervised one-stage adaptation method for

NTSP, by exploiting adversarial learning between labeled day-

time dataset and unlabeled dataset of day-night aligned image

pairs.

In contrast to the above works, we propose a large-scale

dataset of real night-time images with semantic annotations

(21 categories) and a novel exposure-aware framework to

address the NTSP problem.

C. Image Enhancement/Correction.

One naive solution to our problem is to first apply image

enhancement on the input night-time images and then perform

scene parsing with an existing day-time method. Image en-

hancement methods, e.g., [39], [40], [41], [42], aim to remap

the pixel values to improve the image visibility. Wang et al.

[43] tried to address the under-exposure problem by estimating

an illumination map. Cai et al. [44] proposed to learn a deep

image contrast enhancer from multi-exposure images. In [45],

an end-to-end network was proposed to convert an input LDR

image first to HDR to recover the missing details due to

under-/over-exposure, and then reproject it back to LDR as

output while preserving the recovered details. Xu et al. [46]

proposed a frequency decomposition framework to address the
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Fig. 2. Several example images from our NightCity dataset. Note that some regions around the car headlights are over-exposed and some background regions
are under-exposed.

practical under-exposure problem with noise. However, night-

time images often contain both under-/over-exposed regions

(with pixel values very close to zero/one). The remapping

process may not recover meaningful values. As demonstrated

in our experiments in Section V-C, pre-processing the input

images with a state-of-the-art image enhancement method

before scene parsing cannot address our problem well.

In contrast, our method does not apply any pre-processing

techniques. It achieves the state-of-the-art NTSP performances

by (1) constructing the first large-scale NTSP dataset, and (2)

exploiting exposure-aware features to enrich night-time scene

representations via the proposed network.

III. THE NIGHTCITY DATASET

To construct our dataset, we first collect real night-time

driving videos (which were captured using a Driving Recorder

during car driving) over the Internet from various cities,

e.g., Los Angeles, New York, Chicago, Hong Kong, London,

Tokyo and Toronto. These videos cover urban street, highway

and tunnel scenarios. We then manually select 4, 297 diverse

images with no obvious motion blur from these videos for

manual annotation, following the approach used to construct

the Cityscapes dataset [7]. Table I shows the distribution of

the videos over the considered cities.

Annotation. Like Cityscapes, we annotate semantic regions

as layered polygons using LabelMe [47]. All our images are

of resolution 1024×512. Given the difficulty of recognizing

objects in the over-/under-exposed regions, we annotate our

images by two separate annotators (A and B) and re-evaluate

their results by a third one (C). Annotators may refer to the

corresponding video if an image is difficult to see. For each

image I ∈ RH×W×3, annotators A and B give the annota-

tions GA ∈ RH×W×C and GB ∈ RH×W×C , respectively.

Annotator C compares the difference between GA and GB to

produce a compromised map. There are two situations where

Annotator C may correct a label. First, the two labels by the

two annotators are different. Second, the two labels by the

two annotators are the same, but Annotator C considers these

labels as incorrect. In this case, C would discuss with the two

annotators to come up with the final label.

The steps for Annotator C to follow are summarized as:

TABLE I
DISTRIBUTION OF THE VIDEOS OVER ALL CONSIDERED CITIES.

City Number of images Train Test

Los Angeles 148 136 12

New York 375 261 114

Chicago 195 136 59

Toronto 132 92 40

Melbourne 183 128 55

London 74 52 22

Dubai 512 357 155

Helsinki 659 460 199

Hong Kong 367 256 111

Seoul 344 240 104

Nagoya 1025 715 310

Tokyo 181 126 55

Other cities in Japan 102 72 30

1) If C considers both GA and GB are correct, there will

be no changes.

2) If GA and GB are different and C considers one is

correct and the other is incorrect, C will simply select

one of them as the final annotation (i.e., majority win).

3) If GA and GB are different but C considers both

incorrect. C will discuss with Annotators A and B to

make the final decision.

Statistically, there are in total 9.8% of the pixels that

are labeled differently by the two annotators. Among these

different annotations, 47.9% are finally corrected, i.e., (to-

tal number of different-labeled pixels finally corrected)/(total

number of different-labeled pixels). The error proportions, i.e.,

(total number of error pixels per class)/(total number of pixels

per class), of five object categories that are most difficult

to annotate are shown in Table II. We find that poles have

the highest annotation error proportion, as they can be easily

ignored due to their small size. In addition, buildings and sky

can be easily mistakable with each other.

Some regions that are too difficult to annotate even by

humans are labeled as invalid regions so that they are ignored

during training and evaluation. In GCMA [10], a pixel is



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 3. Distributions of labeled pixels for each semantic class in Cityscapes and NightCity, shown in log scale.

TABLE II
PROPORTIONS OF ANNOTATION ERRORS OF FIVE MOST DIFFICULT OBJECT

CATEGORIES TO ANNOTATE.

Class Pole Building Wall Sky Terrain

Error(%) 6.38 4.76 4.84 4.44 3.19

labeled as invalid if the annotator considers it as invalid. In

our paper, we decide it based on the judgement of multiple

annotators, i.e., if at least two of the three annotators consider a

pixel as invalid (a majority-win strategy). The total proportion

of invalid pixels in NightCity is 7.36%.

Figure 2 shows some example images from NightCity,

demonstrating that our images are from complex scenes and

their contents are difficult to recognize and segment even for

humans, due to the under-/over-exposure problems caused by

insufficient lighting, street lights and car headlights. Hence,

our NightCity dataset represents a rather challenging training

and evaluation dataset for NTSP.

Object Class Distribution. Figure 3 compares the distribu-

tions of labeled pixels in NightCity and Cityscapes. As some

categories have significantly higher numbers of pixels (e.g.,

about 1×109 pixels belonging to“building”) than some others

(e.g., about 1×107 pixels belonging to“motorcycle”), we show

the distributions in log scale. Overall, the pixel distributions

of all classes in our night-time street scenes are similar to

those of the day-time street scenes, except for Bicycle. This

is reasonable because there are typically fewer bicycles on the

street at night.

Exposure Distribution. To reveal the over-/under-exposure

problems in our dataset, we also analyze the exposure con-

ditions in our images by checking the pixel values. In pho-

tography, the exposure is determined by the shutter speed,

lens aperture, scene luminance and ISO number. However,

as this information is unknown to us, we use the V channel

(i.e., intensity) of the images in the HSV color space to

represent the exposure. In particular, we divide the exposure

value equally into ten bins from 0 to 1 with an interval of

0.1. Figure 4 shows the average number of pixels per image

that falls into each bin for NightCity and for Cityscapes. The

[0, 0.1] bin stores the most under-exposed pixels, while the

[0.9, 1.0] bin stores the most over-exposed pixels. From Figure

4, we can see that NightCity has significantly more under-
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Fig. 4. The average number of pixels per image at each exposure level for
Cityscapes and for NightCity, with image resolution of 1024 × 512.

exposed pixels than Cityscapes. Meanwhile, we observe that

Cityscapes has a moderate exposure condition, with most of

pixels falling between [0.2, 0.6]. Although the two datasets

have a similar number of over-exposed pixels, we notice that

the over-exposed regions in Cityscapes are mostly in the sky,

which is easy to predict, while the over-exposed regions in

NightCity can be produced by the street lights, car headlights,

or traffic lights, which are very difficult to differentiate. This

indicates that the NightCity dataset has various challenging

exposure conditions, compared with Cityscapes.

Size and Splitting. Compared with existing datasets under

adverse conditions, the number of images in NightCity is

considerably higher. For example, Foggy Driving [48] pro-

poses a real fog dataset with a total of 101 foggy images

for testing (of which only 33 images are finely annotated

and the remaining 68 images are only coarsely annotated).

The Dark Zurich Dataset [10] contains only 151 night-time

images with pixel-level annotations. BDD100K [36] contains

345 night-time images with some labeling errors. Hence, their

ground truth is not very reliable. Raincouver [32] contains

95 coarsely annotated night-time images but only with 3

classes. WildDash [35] only has 13 finely annotated night-time

images. Instead, all 4, 297 images in our NightCity dataset are

manually annotated with fine class labels. Thus, NightCity is

the largest dataset of real night-time images with high-quality

pixel-level annotations.

The NightCity dataset is split into training and test sets. We

split them in such a way that they preserve similar distributions
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Fig. 5. The architecture of our exposure-guided network. It contains two streams, a segmentation stream in blue to predict a semantic label map, and an
exposure stream in yellow to predict an exposure map. We introduce the exposure guidance layer (EGL) to augment segmentation features with exposure
features.

to the whole dataset. In this way, our training and test splits

include 2, 998 and 1, 299 images, respectively.

IV. EXPOSURE-GUIDED NETWORK

The core idea of our proposed Exposure-Guided Network

(EGNet) is to explicitly learn exposure features and use them

to augment the segmentation process. Hence, our network is

designed to have two coupled streams: exposure stream and

segmentation stream. The exposure stream learns to predict

where exposure occurs and uses the predictions to guide the

segmentation stream via the exposure guidance layers so that

the segmentation stream can discriminate the under-/over-

exposed regions more effectively.

A. Network Architecture

Figure 5 shows our network architecture. Given an in-

put image I ∈ RH×W×3, we use a backbone encoder to

transform it into convolutional features. The network is then

split into the segmentation stream (top) and exposure stream

(bottom). The segmentation stream predicts a class label

map MS ∈ RH×W×C , where C is the number of classes.

The exposure stream also outputs a pixel-wise exposure map

ME ∈ [0, 1]H×W , indicating the magnitude of exposure at

each pixel.

As discussed in Section III, we approximate the exposure

map using the normalized V channel of the input image in the

HSV color space.

Our network is mainly based on ResNet [49], like most

existing scene parsing models [50], [51], [52], [5]. ResNet

has four stages that extract hierarchical features at different

scales, with earlier stages capturing low-level features and

later stages capturing high-level semantics. In particular, we

take stage1 (S1) of ResNet-101 as our backbone encoder. The

segmentation and exposure streams have the same architecture,

by combining stage2 (S2), stage3 (S3) and stage4 (S4) of

ResNet, except for the last output layers. For the output layer,

the segmentation stream uses a 19-channel convolutional layer

to output a semantic label map, while the exposure stream uses

another sigmoid nonlinearity function to output a soft binary

exposure map. To train the network, we use a cross-entropy

loss for the segmentation stream, and a ℓ1 loss for the exposure

stream. Our final loss is defined as L = αLc + βLe, where α
and β are weights of the two losses.

B. Exposure Guidance Layer

To extract exposure features from the exposure stream to

guide the segmentation stream, we introduce the exposure

guidance layer (EGL) to augment the intermediate features of

the segmentation stream. Let fS and fE be the intermediate

features of the segmentation and exposure streams. EGL

updates fS to obtain exposure-aware features f̂S as:

f̂S = w1fS + w2fS ⊗Wr, (1)

where ⊗ denotes element-wise multiplication. w1 and w2 are

weight parameters. Wr = δ(W ∗ fE + b) is a soft spatial

attention map as in the popular works [53], [54], where W
and b are learnable parameters, and δ(·) is a sigmoid function.

The exposure-aware features f̂S are then fed into the next

stage of the network. As shown in Figure 5, both fS and fE
are from the previous stages. All the operations in EGL are

differentiable so that we can train the network end to end.

In addition, EGL enables the gradients to be back-propagated

from the output exposure map to the segmentation stream,

thereby allowing the segmentation stream to exploit exposure

information.

The intuition behind Eq. 1 is that our model needs to

learn how to weight the features in the segmentation stream

based on the exposure features, in order to generate more

discriminative segmentation features particularly at under-

/over-exposed regions. This formulation also forces our model

to learn the exposure features that help predict the exposure

maps and guide the scene parsing task towards an optimal

performance.

C. Discussion: Is Noise Always Vital In Night-time Scenes?

Noise is inevitable in every imaging pipeline. The intuition

is that noise is fatal in night-time scenes due to a lack of

illumination, in which cases users may have to increase the
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(a) Night-time Scenes (b) Hist.Eq. of (a) (c) Low-illuminated Scenes (d) Hist.Eq. of (c)

Fig. 6. Comparison of our night-time urban scenes (a) and low-illuminated scenes (c) from [46], and their enhanced ones using histogram equalization (see
(b) and (d), respectively). Noise is negligible in the night-time urban scenes but non-negligible in the low-illuminated scenes.

ISO value to capture more photons. However, we find that

in our night-time urban scenes, the noise issue could be

ignored. This is because in night-time urban scenes, there are

typically some man-made light sources, such as streetlights

and headlights, appearing in the scene. The illuminance of the

camera in this type of scenes is typically larger than 10 Lux.

With a sufficient number of photons overall in the scene, noise

could be ignored even at a low ISO value due to a relatively

high signal-to-noise ratio.

For illustration, a group of visual comparisons between our

night-time urban scenes and low-illuminated scenes from [46]

are shown in Figure 6. We can see that due to the existences of

man-made light sources, the illuminance in an auto-exposed

camera is typically larger than 10 Lux, resulting in a negligible

noise level (both in the original and histogram equalized night-

time images). In contrast, noise can be a significant problem in

the low-illuminated scenes if there is an insufficient number

of photons captured by the camera due to a short exposure

duration or a lack of light sources in the scene. In this situation

(where the illuminance at the camera is typically less than

1 Lux), noise cannot be ignored due to the low signal-to-

noise ratio. Hence, our method does not require any denoising

mechanisms for the night-time scene parsing task.

V. EXPERIMENTS

In this section, we first introduce the exposure-aware Fi-

score (EF1) as one of the evaluation metrics. We then compare

our method to the mainstream day-time scene parsing methods,

to reveal their limitations when applied to the night-time scene

parsing task. Next, We justify the necessity of the proposed

NightCity dataset. We further verify the effectiveness of the

proposed model by comparing our method to ad hoc night-time

scene parsing methods. Finally, we provide ablation studies to

analyze different components of our proposed model.

Implementation Details. Our model is trained using the

SGD optimizer with a batch size of 6 and an initial learning

rate of 1e-5. We decrease the learning rate using a polynomial

policy with a power of 0.9. Our model is trained for 40, 000
iterations, which takes about 12 hours on a PC with an i7-

7700K CPU and two Nvidia 1080Ti GPUs. We set the image

resolution to 500×500 for training and 900×900 for testing.

All predictions are scaled to 1024 × 512, same resolution as

the original image. We set α, β, w1 and w2 to 1, 0.01, 1, 0.3,

respectively.

A. Evaluation Metrics

Following previous works [4], [50], [51], [13], we use

mean IoU (mIoU) to evaluate the NTSP performance in our

experiments. In addition, we propose an exposure-aware F1-

score (EF1) to evaluate the segmentation performance under

different exposure levels. EF1 takes both recall and precision

into consideration. In particular, as in Figure 4, we divide

night-time images into G groups according to the exposure

levels. Hence, EF1 for group g is formulated as:

EF1g = (1 + β2) ∗
(precisiong ∗ recallg)

β2 ∗ precisiong + recallg
, (2)

where precisiong and recallg are precision and recall for

group g, respectively. We set β to 1 to balance the recall and

precision values. To get a scalar-valued metric, we take the

mean of EF1s of all groups as:

mEF1 =

∑G

g=1
EF1g

G
. (3)

B. Comparison to Day-time Scene Parsing Methods

Compared Methods. We compare our model with several

state-of-the-art scene parsing methods, including SegNet [55],

FCN-8s [4], PSPNet [5], BiSeNet [56], PSANet [57], ESPNet

[6], DFN [52], CCNet [19], VPLR [24] and HANet [20].

We use their released codes and train them using the hyper-

parameters reported in their papers. Since all of these methods
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TABLE III
COMPARISON OF OUR MODEL WITH STATE-OF-THE-ART DAY-TIME SCENE PARSING METHODS ON THE NIGHTCITY TEST SET. “C” COLUMNS: TRAINED

ON CITYSCAPES. “C (IE)” COLUMNS: TRAINED ON CITYSCAPES, AND APPLYING DRHT [45] AS AN IMAGE ENHANCEMENT (IE) PRE-PROCESS DURING

TESTING. “N” COLUMNS: TRAINED ON NIGHTCITY. “C + N” COLUMNS: TRAINED ON BOTH CITYSCAPES AND NIGHTCITY. THE BEST RESULTS ARE

MARKED IN BOLD.

Methods

mIoU (%) ↑ mEF1 ↑

C C (IE) N C + N C C (IE) N C + N

SegNet [55] 5.7 5.6 17.3 18.1 0.38 0.41 0.67 0.68

FCN-8s [4] 8.1 8.2 28.2 28.1 0.58 0.58 0.80 0.79

PSPNet [5] 12.6 11.1 46.3 46.5 0.61 0.54 0.87 0.86

BiSeNet [56] 6.1 8.8 50.0 46.2 0.42 0.53 0.87 0.85

PSANet [57] 7.8 8.2 28.8 28.5 0.53 0.57 0.70 0.70

ESPNet [6] 9.1 8.9 34.2 34.5 0.28 0.28 0.82 0.83

DFN [52] 9.6 9.6 50.1 52.3 0.33 0.34 0.87 0.88

CCNet [19] 11.1 10.9 49.2 49.8 0.42 0.46 0.85 0.86

VPLR [24] 12.5 11.2 50.4 52.4 0.65 0.60 0.87 0.88

HANet [20] 13.4 11.8 51.1 53.1 0.64 0.59 0.87 0.86

Ours - - 51.8 53.9 - - 0.88 0.88

are developed for day-time domain, one naive solution for

NTSP is to apply image enhancement to the input night-time

images followed by an existing day-time method for scene

parsing. Hence, we also evaluate this pre-processing approach

using one of the latest enhancement methods DRHT [45] in

our experiment.

Quantitative Results. Table III reports the experimental

results. We have two observations here:

1) The existing day-time models trained on Cityscapes

achieve poor performances (“C” columns), which are

significantly worse than those of our model trained on

NightCity, in terms of mIoU and mEF1. This shows that

NTSP is rather challenging and the state-of-the-art scene

parsing methods are not able to handle this problem well.

2) Adding image enhancement as a pre-process does not

give obvious performance gains (“C (IE)” columns). To

review the problems, we use DRHT [45] to enhance two

example night images, as shown in Figure 7. We can see

that while the under-exposed regions are enhanced, the

over-exposure regions get worse. The enhanced images

also have very different appearances from day-time ones,

causing day-time scene parsing methods to fail.

Results of our model, when trained on our real night-time

dataset, show superior performance over these existing meth-

ods trained on Cityscapes.

C. Evaluation of the Proposed NightCity Dataset

To investigate if our dataset can help improve the per-

formance of existing methods, we have conducted three

Night DRHT Night DRHT

Fig. 7. Examples of night images and the corresponding enhanced images
using DRHT [45].

experiments. In the first experiment, we train the existing

scene parsing models and our model on NightCity, instead of

Cityscapes. In the second experiment, we train all models on

Cityscapes and NightCity. In the third experiment, we compare

the performances of existing methods trained on the existing

night-time dataset BDD100K-night [36] and those trained on

our NightCity.

Quantitative Results. We report the results of the first and

second experiments on the NightCity test set in Table III. We

have the following observations:

1) Cityscapes (“C” columns) vs. NightCity (“N” columns).

We can see that after training on our NightCity, the

performances of all existing methods have improved

significantly, on both mIoU and mEF1. This suggests

that our real night-time dataset is important to boosting

the NTSP performance.

2) Although all models have significant performance gains

after training on NightCity, our proposed model outper-

forms all existing methods. This demonstrates that our

model, while simple, is very effective in handling night-

time images, as compared with other methods. We also

note that our model obtains the best mEF1 performance.

To reveal how well our model performs under different

exposure conditions, we also report the EF1g values for

the 10 exposure groups (i.e., g = {1, . . . , 10}) in Table

IV. We can see that our model outperforms the other

models in all exposure groups, including [0, 0.2] (near

under-exposure) and [0.8, 1] (near over-exposure).

3) NightCity (“N” columns) vs. Cityscapes + NightCity

(“C + N” columns). We can see that after training on

both datasets, some of the existing models have small

performance gain, while others have small performance

reduction. We believe that the performance gain of

some methods may be due to the added context and

object information from Cityscapes. On the other hand,

the added day-time information may confuse the other

methods, causing the performance reduction.
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TABLE IV
COMPARISON OF OUR MODEL WITH STATE-OF-THE-ART METHODS ON EXPOSURE-AWARE F1 SCORE (EF1), WHICH QUANTIFIES THE SEGMENTATION

PERFORMANCE UNDER DIFFERENT EXPOSURE LEVELS. FROM LEFT TO RIGHT, EXPOSURE DEGREE INCREASES FROM UNDER-EXPOSURE TO

OVER-EXPOSURE. EF1g DENOTES DIFFERENT EXPOSURE LEVELS (OR BINS). ALL MODELS ARE TRAINED AND TESTED ON NIGHTCITY. THE BEST

RESULTS ARE HIGHLIGHTED IN BOLD.

EF1g ↑

Methods [0, 0.1) [0.1,0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]

SegNet [55] 0.6335 0.6281 0.6945 0.7171 0.7132 0.6877 0.6625 0.6566 0.6507 0.6665

FCN-8s [4] 0.7717 0.7863 0.8069 0.8189 0.8209 0.8154 0.8027 0.8016 0.7952 0.8085

PSPNet [5] 0.8447 0.8634 0.8739 0.8750 0.8754 0.8739 0.8649 0.8624 0.8583 0.8882

BiSeNet [56] 0.8609 0.8674 0.8735 0.8735 0.8740 0.8736 0.8658 0.8637 0.8571 0.9073

PSANet [57] 0.7067 0.7087 0.7252 0.7228 0.7128 0.6964 0.6778 0.6744 0.6647 0.7252

ESPNet [6] 0.7860 0.8085 0.8325 0.8374 0.8399 0.8352 0.8257 0.8245 0.8178 0.8249

DFN [52] 0.8665 0.8697 0.8773 0.8763 0.8762 0.8762 0.8684 0.8671 0.8623 0.9119

CCNet [19] 0.8681 0.8623 0.8745 0.8737 0.8778 0.8765 0.8625 0.8678 0.8595 0.9109

VPLR [24] 0.8612 0.8655 0.8727 0.8725 0.8765 0.8711 0.8609 0.8613 0.8572 0.9021

HANet [20] 0.8656 0.8645 0.8788 0.8747 0.8812 0.8751 0.8703 0.8638 0.8632 0.9112

Ours 0.8690 0.8751 0.8819 0.8819 0.8828 0.8814 0.8739 0.8738 0.8689 0.9155

For the third experiment, we report the results in Table V.

As there are currently no large-scale datasets with fine annota-

tions for night-time scene parsing, we verify the effectiveness

of the proposed dataset by comparing it with a subset of

the BDD100K dataset (with annotations) [36] (denoted as

BDD100K-night here), which contains 314 night-time images

for training and 31 for test. We train three methods (i.e.,

PSPNet [5], CCNet [19], and HANet [20]) on the BDD100K-

night training set and our training set, and test them on the

BDD100K-night test set. The results in Table V show that our

dataset can help improve the performances significantly, which

demonstrates the effectiveness of our dataset.

Qualitative Results. Figure 8 qualitatively compares the

results of our model with those of the best-performing six

models (according to Table III) on some of the images in

NightCity. These images have different degrees of under-

/over-exposures, which render them difficult to recognize and

segment. However, our model is able to handle them favorably.

Particularly, in the first column, our model can produce more

accurate and sharper boundaries on the building segmentation.

In addition, it also gives more clear and complete sidewalks.

In the second column, the traffic light with its pole is ignored

by other models, but successfully recognized by ours. In the

third column, our model gives more intact and clear shape

of the pedestrian at the right end. In the fourth column, our

model can detect a very small tree in an under-exposed region.

Although BiseNet can also detect the tree, it generates a false

positive segmentation of a person on the left side (the red

segment marked by the yellow box). In the last column, while

both our model and PSPNet are able to segment the buses near

the camera well, PSPNet fails to give a correct segmentation of

the distant bus (marked by the yellow box). These results once

again demonstrate the superior performance of the proposed

model on NTSP.

TABLE V
COMPARISON OF THE EXISTING METHODS TRAINED ON THE

BDD100K-NIGHT DATASET AND ON OUR NIGHTCITY DATASET.
METHODS ARE EVALUATED ON THE BDD100K-NIGHT TEST SET.

Methods
BDD100K-night [38] NightCity-train

mIoU (%) ↑ mEF1 ↑ mIoU (%) ↑ mEF1 ↑

PSPNet [6] 36.8 0.69 51.2 0.76

CCNet [20] 41.4 0.72 54.6 0.81

HANet [21] 45.2 0.74 59.9 0.88

D. Comparison to Night-time Scene Parsing Methods

Quantitative Results. We compare our method to some ad

hoc night-time scene parsing methods on one open challenge,

i.e., the Dark Zurich dataset [10]. This dataset has 151 night-

time images for evaluation. Since their labels are only available

in their challenge, we submit our results to their challenge

to obtain the results. Methods used for comparison include:

GCMA [10], AdaptSegNet [58], ADVENT [60], BDL [61],

DMAda [59], MGCDA [37], DANNet [38]. All these methods

are domain-adaption-based methods, as there were no large-

scale night-time scene parsing datasets with fine annotations

for fully-supervised learning. The results are shown in Ta-

ble VI, which verifies the superiority of our method.

Qualitative Results. We qualitatively compare our results

with the results shown in GCMA [10]. As they only show

results of eight images in their paper (including those in the

supplemental), we therefore visually compare our results with

their results of the eight images. Their results were from three

NTSP methods, AdaptSegNet [58], DMAda [59], and GCMA

[10]. These three compared methods are the same as those

given in GCMA [10]. As shown in the top four rows of

Figure 9, other methods mistakenly recognize a part of the

sky as road (yellow boxes), while our model can produce the
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Fig. 8. Visual comparison of our results with those of the state-of-the-art methods. Our advantages are highlighted by white boxes. A few drawbacks of the
other methods are marked by yellow boxes. All the methods are trained on NightCity.

very clear boundary of the tree (white boxes). In the fifth row,

our model can detect a clear shape of the car. In the seventh

row, our model produces a much cleaner building (white box),

compared with another three methods. In the last row, only

our model can identify the wall. These visual results show

that our model can produce higher-quality segmentation maps

under extreme lighting conditions.

E. Model Analysis

Model Robustness on Day-time Dataset. We evaluate our

model on the existing day-time dataset Cityscapes to show its

robustness. We provide the mIoU results of different methods

trained on both Cityscapes and NightCity, and evaluated on the

validation set of Cityscapes. The results are reported in Table

VII. We can see that although our method is not specifically

designed for day-time scene parsing, it can still achieve the

second-best performance compared with the state-of-the-art

methods on day-time images.

Ablation Study. To investigate the necessity of using the

learned exposure features to guide the segmentation, we run an

ablation study to compare our model against its four ablated

alternatives: (1) remove the exposure guidance layer from our

model (“w/oEGL”); (2) remove the entire exposure stream
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Input GT AdaptSegNet DMAda GCMA Ours

Fig. 9. Visual comparison of our results with those from AdaptSegNet [58], DMAda [59] and GCMA [10]. Our advantages are highlighted with white boxes
and the limitations of existing methods are highlighted with yellow boxes. Our model can produce more accurate and robust segmentation.

TABLE VI
COMPARISON OF OUR MODEL WITH STATE-OF-THE-ART METHODS ON

DARK ZURICH-TEST [10]. THE BEST RESULT IS HIGHLIGHTED IN BOLD.

Methods Venue&Year mIoU (%) ↑

AdaptSegNet [58] CVPR 2018 30.4

ADVENT [60] CVPR 2019 29.7

BDL [61] CVPR 2019 30.8

DMAda [59] ITSC 2018 32.1

GCMA [10] ICCV 2019 42.0

MGCDA [37] TPAMI 2021 42.5

DANNet (DeepLab-v2) [38] CVPR 2021 42.5

DANNet (RefineNet) [38] CVPR 2021 44.3

DANNet (PSPNet) [38] CVPR 2021 45.2

Ours - 45.4

from our model (“w/oES”); (3) replace the attention operation

in Eq. 1 with concatenation (Concat); and (4) with summation

(Sum). We include alternatives (3) and (4) as they are straight-

forward ways of combining multiple features. Table VIII

shows the results. We can see that when the exposure guidance

layers are excluded, the performance of our model drops

significantly, which confirms the importance of our exposure

guidance. If we remove the exposure stream (“w/o ES”), the

performance drops further, as there are no mechanisms for

handling the over- and under-exposed regions. This suggests

that learning to explicitly predict exposure information can

help learn useful features for NTSP, Finally, we can see that us-

ing concatenation and sum operations for fusing the exposure

information can produce slightly better results. However, they

still perform much worse than ours, which demonstrates the

effectiveness of our attention operations in EGLs for exposure

guidance, as the attention mechanism allows our method to

aggregate different contextual information for segmentation

according to the exposure-based attention map.

Strategies of Using the Exposure Map. To incorporate

exposure information into a scene parsing model, one simple

strategy is to directly use an exposure map as an additional

input to the model or as an attention map to fuse the in-
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TABLE VII
COMPARISON OF OUR MODEL WITH STATE-OF-THE-ART METHODS ON

DAY-TIME IMAGES (THE VALIDATION SET OF CITYSCAPES) USING MIOU.
THE BEST AND SECOND BEST RESULTS ARE MARKED IN BOLD AND

BLUE, RESPECTIVELY.

Methods Venue&Year mIoU (%) ↑

FCN-8s [4] CVPR 2015 62.2

SegNet [55] TPAMI 2017 51.5

PSPNet [5] CVPR 2017 75.3

BiSeNet [56] ECCV 2018 39.6

PSANet [57] ECCV 2018 41.2

ESPNet [6] ECCV 2018 40.6

DFN [52] CVPR 2018 75.8

CCNet [19] ICCV 2019 77.1

CGNet [62] TIP 2021 64.8

DSD [22] TIP 2021 72.3

MagNet [63] CVPR 2021 65.6

Ours - 76.9

TABLE VIII
ABLATION STUDY. WE COMPARE OUR MODEL (OURS) WITH ITS ABLATED

VERSIONS: WITHOUT EXPOSURE GUIDANCE LAYERS (W/O EGL),
WITHOUT THE EXPOSURE STREAM (W/O ES), AND REPLACING THE

ATTENTION OPERATIONS WITH CONCATENATION (CONCAT) AND SUM

(SUM).

w/o EGL w/o ES Concat Sum Ours

mIoU (%) ↑ 41.6 40.1 42.5 43.1 51.8

mEF1 ↑ 0.83 0.82 0.84 0.82 0.88

termediate features. To justify the advantage of our network

design over these straightforward solutions, we compare our

model with two baselines: (1) we use the exposure map as an

additional input to our segmentation stream, by concatenating

the exposure map with the RGB image, and remove the

exposure stream (denoted as “as Extra Input”); (2) we replace

the attention map Wr in Eq. 1 with the exposure map and

remove the exposure stream (denoted as “as Attention Map”).

Fig. 10. Visualization of the attention maps learned by our guidance of
exposure layer.

As shown in Table IX, our model outperforms the two

ablated models by a large margin. If we feed the exposure

map as input to the network, the network can only be super-

vised by the semantic labels. Since the exposure map does

not contain much semantic information, its contribution to

semantic segmentation prediction would not be modeled by

the network. Table IX shows that using the exposure map as

input, instead of as the supervision signal, causes a significant

performance drop from 51.8 to 35.6 (in terms of mIoU).

In addition, by comparing Table IX to Table VIII, we can

see that using the exposure map as input produces a worse

performance (35.6 mIoU in Table IX) than the ablated model

of removing the exposure stream “w/o ES” (40.1 mIoU in

Table VIII). This suggests that the network may mistakenly

use the exposure map as a weight map, which pays more

attention to the over-exposed regions and less attention to the

under-exposed regions. Table IX further shows that directly

using the exposure map as an attention map produces a similar

result (40.2 mIoU in Table IX) as the ablated model “w/o ES”

(40.1 mIoU in Table VIII). This demonstrates that exposure

information may not help in such an attentive manner.

Figure 10 shows examples of visualization of the attention

maps learned by the exposure guidance layer. The first row

shows that our model gives more attention to distant cars

with lots of headlights (over-exposure) and the second row

shows that our model pays more attention to the under-exposed

regions. In contrast to the direct usage of exposure map as

attention map that network would pay more attention to over-

exposed regions, our model can learn to adaptively attend to

both over- and under-exposed regions as all of them are crucial

to segmentation performance of night-time images.

These experiments verify the effectiveness of our method

of exploiting the exposure information, by first learning the

exposure representation via the image-to-exposure translation

step and then learning the fusion of semantic and exposure

information via the exposure guidance layer.

TABLE IX
COMPARISON WITH TWO ABLATED MODELS OF USING THE EXPOSURE

MAP: USING IT AS AN ADDITIONAL INPUT (AS EXTRA INPUT) AND AS AN

ATTENTION MAP (AS ATTENTION MAP).

as Extra Input as Attention Map Ours

mIoU (%) ↑ 35.6 40.2 51.8

mEF1 ↑ 0.73 0.76 0.88

Input Ours Ground truth
Input Ours GT

Fig. 11. Failure cases. Our model may fail to detect objects that appear in
large under-exposed regions, e.g., thin poles (top row) and trees (bottom row).

VI. CONCLUSION

In this paper, we have addressed the night-time scene

parsing (NTSP) problem. To this end, we have proposed a

large dataset of real night-time images with fine semantic

annotations for training and benchmarking. We have also pro-

posed a two-stream framework especially designed to address
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the NTSP problem, which explicitly learns exposure features

to augment the scene parsing process. Our results show that the

proposed dataset can benefit existing scene parsing methods

when applied to night-time scenes. We have also demonstrated

that our proposed model trained on our dataset outperforms all

existing methods, yielding state-of-the-art performance.

Although we have demonstrated the effectiveness of our

model on night-time scenes, our model may fail in some

extremely challenging situations, e.g., if an under-exposure

region is large. Figure 11 shows two failure examples of our

model, in which it fails to detect the thin poles (top row) and

the trees (bottom row). All these objects are located in large

under-exposed regions and are visually difficult to identify

even for human. As a future work, we would like to consider

using the raw data from the camera to address this problem.
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