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DynamicManga: Animating Still Manga via Camera
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Abstract—We propose a method for animating still manga
imagery through camera movements. Given a series of existing
manga pages, we start by automatically extracting panels, comic
characters and balloons from the manga pages. Then, we use
a data-driven graphical model to infer per-panel motion and
emotion states from low-level visual patterns. Finally, by com-
bining domain knowledge of film production and characteristics
of manga, we simulate camera movements over the manga pages,
yielding an animation. The results augment the still manga
contents with animated motion that reveals the mood and tension
of the story, while maintaining the original narrative. We have
tested our method on manga series of different genres, and
demonstrated that our method can generate animations that are
more effective in storytelling and pacing, with less human efforts,
as compared with prior works. We also show two applications of
our method, mobile comic reading and comic trailer generation.

Index Terms—Comics, 2D animation, semantic estimation,
camera movement

I. INTRODUCTION

DURING the last few decades, manga, i.e., Japanese
comics, has grown to be one of most popular storytelling

mediums, consumed by an increasingly larger number of
audiences across the world. However, as our viewing ex-
perience is shifting to smartphones and tablets, the way to
consume comics remains traditional, mainly turning digital
comic pages that are converted from print. In an attempt to
evolve the medium of comic storytelling, new digital comic
formats, such as Infinite Comics and DC Squared [6], have
been unveiled recently, which introduces dynamics to static
comics by moving comic characters and balloons to tell a story.
However, they are often manually created by professional
artists using special-purpose tools (e.g., Manga25 [21]) with
a lot of authoring efforts. The high production cost makes it
impractical to deploy such dynamic formats at a large scale.

Our goal of this work is to create a low-cost system that
enables arbitrary users to produce a dynamic format of manga
with compelling motion from existing manga pages. Low-
cost in our context means minimal user intervention, which
allows for large-scale application of our method in practice.
However, due to the low-cost requirement, it is infeasible to
target for the complex animations used by Infinite Comics and
DC Squared because of two technical aspects. First, moving
comic characters individually requires accurate masks of every
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character, which is difficult to achieve without manual efforts
since manga drawings mainly consist of monochromatic line
drawings. Second, to create compelling motions of individual
characters, it is essential to understand the semantic relations
among the characters, which are hard to obtain automatically.
Hence, instead of moving the foreground contents, we focus
on creating the illusion of motion by mainly moving a virtual
camera while keeping the contents still. This is, in spirit, sim-
ilar to the Ken Burns effect [15] widely used in documentary
filmmaking, where the illusion of motion is created by panning
over and zooming into or out of still photographs over time.

Although it is based on simple camera movements, produc-
ing an animation that effectively tells a story is challenging.
First, to properly show important contents of manga, we
need to automatically detect semantically important comic
characters from the monochromatic line drawings. Second,
camera movements need to be guided by high-level semantics
of the contents (e.g., motion states or emotional states of
comic characters), which are not available a priori. Third,
camera movements must be well planned, such that they are
meaningful and consistent throughout the animation, while
also properly aligning with the narrative in the manga pages.

To address these challenges, we present a novel approach for
automatically generating a storytelling animation from existing
manga pages via camera movement mainly comprising of
zooming and panning. Our method also simulates a set of spe-
cial effects (e.g., shaking camera, motion blurring, and moving
motion lines) automatically or with little user intervention.
Given a sequence of manga pages in raster format, we begin by
automatically segmenting panels and balloons, and detecting
comic characters based on contour grouping (see Section IV).
With the extracted elements, we infer the motion and emotion
states of each panel using a context-aware graphical model
based on a set of low-level background visual cues that can
be easily and reliably detected. Finally, we use the extracted
elements and the inferred semantics to determine the type, path
and speed of camera movements over time, based on domain
knowledge of film production and characteristics of manga
(see Section VI).

We have tested our approach on manga series with different
story tempos and visual styles. Our results show that our
method simplifies the animation creation from still manga
contents, and can produce more effective animations for
storytelling than existing alternatives. We also demonstrate
two applications of our approach to facilitating mobile comic
reading and rapid creation of comic trailers.

In summary, we make the first attempt to animate still
manga via camera movements for effective storytelling, with
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the following technical contributions: 1) an automatic method
for detecting comic character regions on manga line drawings;
2) a context-aware graphical model that can robustly infer
motion and emotion states in each panel, from a range of
low-level visual patterns; 3) a method for planning camera
movements, by combining domain knowledge of film produc-
tion and characteristics of manga.

II. BACKGROUND

Animating still imagery. Adding animated motions to
a single still image has long been the interest of computer
graphics community. Early work by Freeman et al. [11] used a
band-pass filter on a single image to produce a compelling illu-
sion of motion. To animate a 2D still picture, researchers have
attempted to drive the motion of some target objects using a
wide spectrum of sources, including hand-drawn sketches [19],
motion parameters estimated from videos [31], as well as
3D motion capture data [12], [14]. Several methods [29], [7]
augment scene photos by synthesizing stochastic dynamics of
natural phenomena (e.g., rippling water and swinging trees)
using physically-based simulations. Xu et al. [34] generated a
motion sequence of an animal from a still picture of an animal
group, by ordering snapshots of individuals and morphing
the ordered snapshots to smooth the animation. Shlizerman et
al. [30] cross-faded well-aligned face images to generate a face
animation from a face image collection of the same person.
To convincingly tell the story, our targeted motion should be
well planned based on high-level semantics of image contents.
This essentially distinguishes our work from all previous ones,
where synthesized motion, either stochastic or designed by
users, is not meant to convey a storyline to the audience.

Ken Burns effect. Several commercial tools, such as
Microsoft Photo Story [24], support the creation of simple
Ken Burns effects from a photo collection, but rely on manual
editing on every keyframe. Most closely related to our work
is “moves-on-stills” by Jain et al. [14], which makes use of
eye movement data recorded from multiple viewers on comic
panels to animate still comics with the Ken Burns effect.
While sharing a similar goal, our method has two major
differences from theirs: First, their method does not consider
the semantics of the contents, whereas we take advantage
of inferred semantics to determine temporal behaviors (e.g.,
speed) of the virtual camera, leading to more sophisticated
effects that benefit storytelling. Second, their method requires
tedious process of collecting eye-tracking data on every comic
panel to be animated, while our method is low-cost, only
requiring little manual efforts.

Computational Manga. Recent works on computational
manga automatically arrange input images or picture subjects
and text balloons to synthesize professional-looking manga
pages [3], [4]. In this work, instead of assisting in manga cre-
ation process, we enhance existing manga pages with animated
motion, resulting in an effective way of manga consumption.

III. OVERVIEW

As shown in Figure 1, our method consists of three main
stages: element extraction, semantic estimation and camera

movement simulation. Given a manga page in raster format,
the element extractor begins by automatically labeling all the
panels, subjects and balloons. Then, taking the labeled manga
page as input, the semantic estimator employs a context-
aware graphical model to infer the motion and emotion states
of each panel. Finally, the camera movement simulator uses
the estimated semantics and the labeled elements to compute
the type, motion path and speed of camera movements, by
combining domain knowledge of film production and manga
characteristics.

IV. ELEMENT EXTRACTION

Given a sequence of manga pages, our element extractor
analyzes each manga page and segments the elements of
interest, including panels, balloons and comic characters.

A. Panel and Balloon Extraction

We use the automatic method of [26] to extract panels and
then compute reading order of the extracted panels based on
their bounding boxes [1]. To extract balloons, we first detect
text regions in the panel using the method of [18], which helps
localize text lines in comic images. The text regions are then
filled with white color, and the balloon regions are identified
by running the trapped-ball method [35] using a seed point
randomly selected within the text region. For the borderless
balloons where the trapped-ball method would output quite
irregular and large regions, we simply treat the bounding boxes
of the text regions as the detected balloons.

B. Comic Character Detection

Automatically extracting accurate boundaries of foreground
characters in manga drawings can be challenging since the
characters are often drawn with open boundaries and no color
information. Thus, given a segmented panel, we aim only to
detect bounding boxes of characters, which are sufficient for
our purpose of framing them within a rectangular window, i.e.,
virtual camera (as discussed in Section VI).

Our observation is that to emphasize the comic characters,
manga artists often draw them using perceptually salient
contours, i.e., long, curved and thick edges (e.g., contours
of human body, face, and hair) [25], while the background
objects using short curved edges (e.g., tree leaves in natural
images or decoration patterns on buildings) or long straight
lines (e.g., boundaries of buildings). Therefore, we propose to
detect comic character regions by detecting and grouping the
long, curved and thick contours. Note that operating on low-
level image features would make our detection method quite
general and independent of character type (e.g., human, animal
or robot), albeit at the cost of its robustness for highly cluttered
scenes. Nevertheless, we have found that such cluttered scenes
are only occasionally used by artists for some special effects,
since frequent appearance of overwhelming visual complexity
would impact visual clarity of their artworks.

Given an input panel image I, our character detection
algorithm proceeds in three steps: thick contour extraction,
contour selection, and contour clustering. To prevent false-
positives on balloons and text, we remove balloon regions
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Fig. 1: Overview of our method. Given a manga page (“Fairy Tail”) (a), our approach automatically extracts panels, comic
characters, and balloons (b), and infers per-panel motion state (slow, medium, fast) and emotion state (sad, calm, anxious,
excited) (c). It then generates 2D camera movements (e.g., zooming and panning) of varying speeds across the page based on
the extracted elements and the estimated semantics (d), resulting in an animation video that can effectively tell the story (e).

(a) Input panel (b) Contour extraction (c) Contour selection (d) Contour clustering (e) Detected regions

Fig. 2: Comic character detection. The contour lines are thickened to improve their visibility in this figure. The input panel is
from “Slam Dunk”.

from I by filling them with white (see Figure 2(a)) before
comic character detection.

Contour extraction. In this step, we detect all the thick
contours in I, which are used as character contour candidates
in subsequent steps. We first extract the main structures from
I by removing texture details using [33], and then enhance
edges by applying adaptive histogram equalization. Next, we
extract a set of thick line segments using an edge-enhanced
isotropic nonlinear filter [13]. This set of line segments may
have gaps between them due to misdetection or occlusion.
Hence, we finally use a contour completion algorithm [27] to
connect the fragmented line segments, forming perceptually
coherent contours C = {ci}Ni=1 (Figure 2(b)).

Contour selection. The goal of this step is to select a set
of contours from C that belong to the foreground characters.
We formulate the selection process as a label assignment
problem. Each contour ci is associated with a binary variable
yi ∈ {1, 0}, which indicates whether the contour is selected
(yi = 1) or not (yi = 0). The optimal set of labels Y =
{yi}Ni=1 are then found by minimizing an energy function,
consisting of a likelihood term EL(Y) and a regularization
term ER(Y).
EL(Y) is defined to prefer selecting long, curved contours

that lie near regions of densely-distributed contours, which
are indicative of outline strokes belonging to a foreground
character. For each contour ci, we extract four features, which
are illustrated in Figure 3: 1) li is the length of ci, normalized
w.r.t all the contours within the panel; 2) κi is the mean
absolute curvature of ci, calculated from the the analytical

Length Curvature Neighborhood area Motion line response

Fig. 3: Illustration of variables defining the likelihood term for
contour selection. The rightmost panel is from “Fairy Tail”.

curvatures of a 3rd order polynomial fit to the points of ci;
3) Ai is the area of the bounding circle of ci’s 5 nearest
neighbors, normalized to the bounding circle of the panel; 4)
si ∈ [0, 1] is the average motion-line response of the points on
ci, where the motion-line response is 1 if the point is detected
as part of a motion line (see Section V-A) and 0 otherwise.
Using these features, we define the contour likelihood term as:

EL(Y) =

N∑
i=1

1∑
k=0

I[yi = k]
Φki

Φ0
i + Φ1

i

, (1)

Φ1
i = (1− li)e−κiAisi, (2)

Φ0
i = lie

κi(1−Ai)(1− si), (3)

where I[yi = k] is an indicator function that is set to 1 if yi is
equal to k, and 0 otherwise. Φ1

i is the energy when the contour
ci is selected (yi = 1), and will have a small value when the
curve is long and smooth (as measured by (1− li)e−κi ), while
also being close to other contours (as measured by Ai), but
not part of motion lines (as measured by si). The other term
Φ0
i is the energy when the contour ci is not selected (yi = 0),
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and uses the complement of the terms in Φ1
i . Hence, Φ0

i will
have a large value when Φ1

i has a small value, and vice versa.
ER(Y) prefers nearby contours having the same labels as:

ER(Y) =

N∑
i=1

exp(−d(ci, cni))I[yi 6= yni ], (4)

where ni is the index of the nearest contour to ci according
to Hausdorff distance d(·, ·) between two contours. I[yi 6= yj ]
is an indicator function that is set to 1 if yi 6= yj , and 0
otherwise.

We use the graph-cut algorithm [2] to minimize the total en-
ergy function EL(Y)+ER(Y), thus obtaining a set character
contours (Figure 2(c)).

Contour clustering. In this step, we cluster the charac-
ter contours into groups (Figure 2(d)) using single-linkage
agglomerative hierarchical clustering. We set the maximum
number of clusters to 3 since 92% of panels in our training
dataset contain at most 3 characters. Small groups with less
than 4 contours are merged to their closest large group, and
groups with only one contour are discarded as outliers. Finally,
we compute the bounding box of each group to represent
a character region (Figure 2(e)). Our clustering method may
merge multiple spatially adjacent characters together to form
a single region. However, it is worth emphazing that, because
each region is used to define a framing window during
animation generation (Section VI), such grouping behaviour
is not problematic in our context since it results in spatially
adjacent characters being framed into a single shot.

C. Evaluation
We evaluated the effectiveness of our element detectors on

220 manga pages from different manga series (“Fairy Tail”,
“Naruto”, “Slam Dunk”, “Binetsu Shoujo” and “Strobe Edge”),
containing 1041 panels, 1221 characters, and 1124 balloons.
For each page, we manually labeled the boundaries of the
panels and balloons, and the bounding boxes of the characters
as ground truth regions. We measure the detection accuracy
using the Jaccard index, J = |R∩G|

|R∪G| , where R and G are
the automatically detected element region and ground truth
element region, respectively. A higher Jaccard index indicates
better detection performance. We define an element (i.e., panel,
balloon or character) to be correctly detected if J ≥ 0.8.

On our test dataset, the panel extraction method successfully
detected 90% of all panels, and failed on borderless panels or
panels with a large percentage of open boundaries. The balloon
extraction method correctly detected 83% of the balloons,but
typically failed on borderless balloons or very small balloons
with little text. Since clustering nearby characters is valid
in our character detection as discussed in contour clustering
step, for the ground-truth in character detection, we combined
multiple overlapping characters into a single region. Our
character detector correctly identified 85% of the character
regions, and would malfunction when the scene is extremely
cluttered.

V. SEMANTIC ESTIMATION

Using the automatically labeled panels, balloons and comic
characters, we next estimate semantic information for each
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Magnitude

Depressed
Sad

Anxious
Frantic

Relaxed
Calm

Excited
Energetic

Depressed Pleasant Valence

Arousal

Peaceful
Excited

Fig. 4: Motion and emotion space.

panel. We consider two basic types of semantics, motion and
emotion, which are crucial for understanding the tempo and
tone of the story. The motion state describes how fast an
action is taking place, and has three possible values: slow,
medium, and fast (denoted as {m1, m2, m3}), as shown
in Figure 4(left). The emotion state describes how a character
is feeling, and has four possible states, sad, calm, anxious,
and excited (denoted as {e1, e2, e3, e4}), which are derived
from a 2D arousal-valence space that is commonly used in
the field of emotion study [16] (see Figure 4(right)). Note
that we assume each panel to have only a single motion or
emotion state regardless of how many characters are inside it.
This assumption is usually valid because manga artists tend to
depict only a single and coherent state in each panel in order
to convey ideas more effectively without any ambiguities [22].
When multiple characters have different motion or emotion
states, they are normally separated into different panels instead
of being put into a single panel.

One possible approach to estimate the motion and emotion
states of each panel is to recognize facial expressions and
poses of comic characters. Unfortunately, as the face and body
of a comic character may have exaggerated proportions, with
inconsistent transformations across drawings (viewpoints), ex-
isting computer vision techniques, which assume that the
human face and body deform slightly and consistently, cannot
be easily amended to address our problem.

We note that manga artists often use a number of visual
patterns (e.g., motion lines and background texture) to enhance
readers’ perception of motion and emotion states depicted in
the panels [22]. For example, the use of streaked backgrounds
in the left most panel of Figure 5 can make readers feel
that they are moving together with the characters. In addition,
emotionally expressive background textures (e.g., screen tones
in the right most panel of Figure 5) can help readers experience
the characters’ feeling. This motivates our insight that motion
and emotion states are correlated with these non-foreground
visual patterns, and thus can be estimated reliably from these
patterns without using high-level attributes of the characters.

Hence, we propose a context-aware probabilistic model to
estimate the motion and emotion in the panel from its low-
level visual patterns. The model infers a panel’s states by
considering all the visual patterns in a panel jointly. This
allows the model to better handle conflicting evidence, for
example, when the same panel contains both motion lines
(suggesting fast motion) and regular panel shape (suggesting
medium motion). The local context model, which connects
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Panel shapeBalloon shape Background Intensity

Background textureMotion lines

Fig. 5: Features used for semantic estimation. The left panel
is from “Fairy Tail”, and the others are from “Strobe Edge”.

each panel to its adjacent panels, allows a panel’s semantics
to be inferred from its neighbors when the visual patterns
in the panel are insufficient to support direct inference. This
is motivated by the fact that a sequence of panels depicts a
continuous event, and thus adjacent panels will likely have
coherent semantics. For example, a comic character that is
crying in one panel is more likely to be peaceful in the adjacent
panel than laughing.

A. Features of Visual Patterns

To describe the aforementioned visual patterns, we compute
a set of features for each panel (Figure 5). During feature
extraction, we first remove all comic characters and balloons
detected in Section IV by filling their regions with white.
• Presence of motion lines Im: Motion lines in the

background region can indicate that the character inside a
panel is moving fast. The motion lines typically appear as
a group of parallel lines, or as lines converging towards
one point. We use a binary variable Im to indicate the
presence or absence of motion lines. In addition, we
also classify motion lines into parallel and converging
for use in the camera simulation stage. Please refer to
the supplementary material for our motion line detection
algorithm.

• Background texture histogram Ht: Manga artists em-
phasize a comic character’s feeling by using a variety
of background texture patterns (i.e., screentones), from
basic dotted tones to fancy effects. Therefore, textures of
different styles can also reflect the emotion states of the
character. We describe the texture in a background region
with a histogram of 64 texton codewords [20], which are
based on Gabor filters at 8 orientations and 8 scales.

• Background intensity HI : Manga artists often adjust the
intensity level of the background region to highlight the
emotion of the scene. For example, a darker background
may convey a feeling of depression or suspense. We
compute three features: the mean, standard deviation, and
entropy of the intensity values of the background pixels.

• Regularity of balloon shape Rb: The shape of the bal-
loon can also provide cues about the character’s feeling
and action. In scenes where comic characters are talking
calmly, the balloons are typically ellipses. When comic
characters are fighting or excited, the balloons will likely
have jagged edges (e.g., see Figure 5). We compute the
orientations of the normal vectors sampled uniformly

Fig. 6: Context-aware graphical model used to estimate the
semantics (i.e., motion and emotion states) of all the panels
{yi} from low-level visual patterns {xi}. The manga page is
from “Fairy Tail”.

along the balloon contour, and use the entropy of the
orientation to describe the balloon shape.

• Regularity of panel shape Rp: An irregular panel shape
can give a strong sense of dynamics, suggesting the
presence of strong motion or emotion. To describe the
panel shape, we compute the standard deviation of the
relative orientations between any two adjacent boundaries
of the panel.

Given a panel, its motion-related and emotion-related fea-
ture vectors are defined as xm = (Im, Rp, Rb)T and xe =
(Rp, Rb,HI ,Ht)T , respectively.

B. Context-aware Graphical Model

To infer the motion or emotion states, we propose a context-
aware probabilistic model that optimally combines a vari-
ety of visual features as local evidence, while considering
contextual information from neighboring panels. We use two
separate models, one for motion and another for emotion.
Here, we describe the model used to estimate the motion
state ymi ∈ {m1,m2,m3} from input features xmi . The model
for estimating the emotion state yei ∈ {e1, e2, e3, e4} can
be obtained similarly from the input emotion-related feature
vector xei .

To infer the motion states of the panels, for each manga
page, we build a temporal chain of the panels, C = (V, E),
according to the reading order, where nodes V represent
the panels, and edges E represent connectivity between the
consecutive panels. We associate a discrete variable ymi ∈
{m1,m2,m3} with each node, representing its motion state.
Let Y = {ymi |∀i ∈ V} be the states of the entire page and
X = {xmi |∀i ∈ V} be the observed features of all the panels.
This gives rise to a chain-structured probabilistic graphical
model (also called a conditional random field, CRF [17]),
which captures local evidence xmi of motion state ymi , as well
as interactions between neighboring motion states. Figure 6
shows a manga page along with its graphical model.

Using the graphical model, we define the probability of Y
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Fig. 7: The edge weight matrix for motion (left) and emotion
(right) estimation. The intensity of each entry indicates the
probability of observing two specific states at adjacent panels.
Note that for both matrices, the entries closer to the diagonal
tend to have higher values than those farther away from the
diagonal. This indicates that the motion/emotion states change
gradually between adjacent panels, and that dramatic changes
are less frequent.

conditioned on X as:

p(Y|X) =
1

Z(X)
exp[

∑
i

φ(xmi , y
m
i ) +

∑
(i,j)∈E

ψ(ymi , y
m
j )],

(5)

where Z(X) is a partition function ensuring that the proba-
bilities sum to one. φ(xmi , y

m
i ) is the node energy denoting

the potential of assigning ymi to node i, having seen evidence
xmi . ψ(ymi , y

m
j ) is the edge energy measuring the potential of

jointly assigning ymi to node i and assigning ymj to node j.
Thus, our problem amounts to finding the most likely configu-
ration of Y given the evidence X, i.e., Ŷ = arg max

Y
p(Y|X).

The inference can be performed efficiently using the Viterbi
algorithm [10].

Node energy. The node energy φ(xmi , y
m
i ) is the potential

of motion state ymi and observed visual features xmi occurring
together. We define it as a linear function of xmi ,

φ(xmi , y
m
i ) = wT

ymi
xmi , (6)

where wymi
is a weight vector for each motion state ymi ∈

{m1,m2,m3}. We use a different weight vector for each
motion state since different features (or combinations thereof)
are useful for predicting a particular motion state.

Edge energy. The edge energy allows the motion states of
adjacent panels to influence each other, and is defined as

ψ(ymi , y
m
j ) = βymi ,ymj , (7)

where βymi ,ymj is the edge weight, which measures the potential
of two neighboring nodes being assigned to ymi , y

m
j . Figure 7

visualizes the edge weights estimated from the “Naruto”
manga series.

C. Weight Learning

The parameters of our graphical model are Θ =
{wl, βl,k|∀l, k ∈ {m1,m2,m3}}. We learn the parameters
Θ by maximizing the log-likelihood of a training dataset
(details below) using the implementation in [28]. Our training
dataset contains 125 manga pages from 3 manga series of

different genres, 30 from “Naruto” (action), 56 from “Slam
Dunk” (sports), and 39 from “Binetsu Shoujo” (romance). For
each page, we first manually annotated all the panels, comic
characters and their corresponding balloons. Then, the motion
and emotion states for each panel were labeled by five people
with significant experience in reading manga. Finally, each
panel was assigned the motion/emotion states with the largest
consensus among the labelers.

D. Evaluation

We evaluated the effectiveness of our motion/emotion esti-
mators on the training dataset. We used 5-fold cross validation
where 80% of the data is used for training and 20% held out
for testing. We compared our estimator (using all features and
context) against several variants, in which the edge energy is
disabled (no context is used) or each of the features is omitted.
The estimators were evaluated using the average accuracy
rate on the five validation folds, and the results are shown
in Table I. Our estimator outperforms the variant that uses
only node energy (“w/o context”) by a large margin, which
confirms the importance of using the context of neighboring
panels. It also outperforms the estimators where each feature
is omitted, thus showing the importance of considering all
features together. Note that the manga series in our training
dataset are carefully selected to be representative in telling
stories with mainstream visual effects, e.g., speed lines, fancy
textures as well as irregular balloon and panel shapes [22].
While other manga series may have different and diverse
drawing styles, they should use similar visual effects with the
manga series in our training dataset. Therefore, we believe
that, our motion/emotion estimators, which are based on the
commonly-used visual effects, can well generalize to other
manga series that are not present in our training dataset.

Contribution of foreground features. To investigate how
well the visual features of foreground characters affect the
semantic estimation, we compare our estimator with two al-
ternative estimators, the fg estimator and the fg-bkg estimator.
The alternative estimators are constructed and learned in the
same way as our estimator except that they use different sets
of visual features. The fg model is based on only foreground
features, while the fg-bkg model combines foreground fea-
tures and all the background features in Section V-A. We
compute the following features on the foreground region of
each panel: 1) foreground intensity computed in the same
way as background intensity in Section V-A; 2) foreground
texture computed in the same way as background texture
histogram in Section V-A; 3) foreground shape described by
the HOG (Histogram of Oriented Gradient) feature [8]. Some
high-level semantic features, e.g., facial expression, can be a
strong indicator of motion and emotion states. However, due
to the substantial variations of comic characters in shape and
appearance, such features are difficult to be obtained in an
automatic way, making them unsuitable for our system which
aims to achieve minimal user intervention. Hence, we do not
include such high-level features in the comparison.

The results are shown in Table I. The two estimators
with foreground features have poorer performance than our
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Motion Emotion
Our estimator (all features, w/ context) 86.3% 85.9%
Our estimator (all features, w/o context) 70.3% 72.0%
Our estimator (all features except motion lines) 70.6% -
Our estimator (all features except panel shape) 72.5% 68.6%
Our estimator (all features except balloon shape) 78.1% 63.3%
Our estimator (all features except bkg intensity & texture) - 75.0%

The fg estimator 51.7 % 62.7 %
The fg-bkg estimator 65.6 % 68.0 %

TABLE I: Average accuracy of our motion/emotion estimators
and its variants. For both motion and emotion, our context-
aware estimator using all features outperforms the variants.

background-based estimator. This implies that the foreground
features are not indicative of the motion and emotion states of
the panel, and would confuse our estimator (poor performance
of the fg-bkg estimator). Hence, we do not incorporate the
foreground features into our semantic estimator.

VI. CAMERA MOVEMENT SIMULATION

Given the extracted elements and inferred per-panel semat-
nics, the goal of camera movement simulation is to move
a window (viewport) of fixed aspect ratio over the manga
pages to generate an animation that effectively tells the story.
Working in the 2D image domain, we primarily focus on 2D
camera movements, panning and zooming. In our context,
panning and zooming are implemented by translating and
scaling the window, respectively. We first determine, for each
panel, the type and path of camera movement according to
the panel’s contents and semantics. Then, the speed of the
camera movement and shot duration are computed based on
the inferred motion and emotion states.

To begin with, we group all the comic character and balloon
elements (represented by a set of discrete points along their
contours) using the mean-shift algorithm with the Hausdorff
distance, so that adjacent subjects and their balloons are
grouped into the same cluster. We refer to the bounding box
of each cluster as a region of interest (ROI). Then, for each
ROI and panel, we determine a window to properly compose
its contents. These windows will serve as the key windows
for computing camera movement path as described later. For a
panel, the window is defined as the smallest window enclosing
the panel. For a ROI, the window is selected so that it should
be tight around the ROI, contain as many ROI pixels as
possible and lie inside the current panel. Please refer to the
supplemental for more details.

A. Computing Type and Path of Camera Movements

In film production, basic panning and zooming are typically
motivated as follows [32]:
• Panning is usually used to shift the audience’s focus from

one subject or location to another.
• Zooming in can make the audience focus on a comic

character, showing the character’s reaction or emotions.
• Zooming out can pull the audience away from the

character, putting the character in context.
We propose a method to determine the type and path of

camera movement, by combining the filming techniques above

with manga characteristics. Our method is guided by the
following principles (illustrated in a binary decision tree in
the supplemental):

• No ROIs. If a panel has no ROIs, then the panel is likely
an establishing shot with only a background scene. We
translate the window from right to left (if the panel is a
horizontal rectangle) or from top to bottom (if the panel
is a vertical rectangle), to establish the whole scene [9].

• Strong motion with motion lines. If a panel has a single
ROI with motion lines present fast motion detected, this
indicates that the character is moving fast. To create a
strong illusion of the character motion, we start with the
ROI and move the window along the motion lines, by
either panning across parallel motion line (in the direction
that is consistent with the reading order), or zooming into
the convergence point of converging motion lines.

• Weak or strong emotion. If there is a single ROI
with weak (i.e., sad) or strong emotion (i.e., anxious
and excited), we zoom to highlight the emotions of the
character [32]. If the background region is large, then we
start with the ROI and zoom out to the panel window,
putting the character into its context (i.e., background).
Otherwise, we start with the panel window and zoom into
the character (ROI window) to reveal its inner thoughts
and emotions.

• Multiple ROIs. When there are more than one ROI inside
a panel, we use a series of pans to visit each of the ROIs,
in order to transfer focus from one ROI to another [32].
To determine the visiting order, we use the manga reading
convention, which is to read contents within a panel from
right to left and then top to bottom. The windows of the
ordered ROIs are then used as the set of key windows.

• Other cases. If there is a single ROI with calm emotion
or weak motion (slow/medium), we pan the window over
the panel to create subtle motion based on its shot type.
The distance of the panning is proportional to the panel’s
shot duration as computed in Section VI-B. In particular,
we detect a close-up shot if the ROI occupies nearly the
entire panel (i.e., ROI to panel area ratio ≥ 70%). For
a close-up shot, we start by showing all the contents,
and pan down (if panel is a vertical rectangle) or left (if
panel is a horizontal rectangle). Otherwise, the panel is a
medium or long shot, and we start with the ROI and pan
the window in the direction that captures the most panel
contents, to put the character in the context.

Note that, in all the cases, if the start and end key windows
are similar in position and size, we just show the start key
window without any movement to avoid any visually abrupt
short pan or zoom.

Adding establishing camera movement. When panning
across the panel of a long shot, it is essential to show the entire
scene at the end, so that the audience can see the relationships
among the characters that have been presented. Therefore, at
the end of panning over a long shot, we append a zoom out,
which is from the end window of the panning to the window
of the panel. A panel is regarded as a long shot, when all the
comic characters take up less than 20% of the panel area.
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Transition between panels. After computing the window
movements for each individual panel, we link these move-
ments together to form a coherent motion. Given two panels
that are adjacent in reading order, we smoothly transition from
the last key window of the first panel to the first key window of
the second panel. We support three transition modes: panning,
cross-blurring, cross-fading. Panning is used when the two
panels are well-aligned horizontally in the same row on the
page and the ROIs in the two key windows have similar aspect
ratios. This avoids visual discontinuities induced by diagonal
camera movements and abrupt changes in ROI shape. Cross-
blurring (i.e., blurring the first panel, transitioning to a blurred
second panel, and then deblurring) is used for moving from
one page to another, to imply scene or event transition between
the pages. Otherwise, cross-fading is used.

B. Computing Speed and Shot Duration of Camera

To fully express the tempo and tension of a story, for each
panel, we define the speed s of its camera movements as a
function of both its motion state m and emotion state e,

s = ρ[λm3 + (1− λ) e4 ], (8)

where m ∈ {m1 = 1,m2 = 2,m3 = 3} and e ∈ {e1 =
1, e2 = 2, e3 = 3, e4 = 4}. The parameter λ balances
the contribution of the motion and emotion states. In our
implementation, we set λ = 0.6 to give the motion state a
higher weight in affecting the speed. ρ is a scalar value that
varies for different types of camera movements: w/30 pixels
per second for panning (w is the width of a manga page), and
1.4 scales per second for zooming.

To offer the audience with enough time to understand the
contents in the window, we hold camera over a key window
for a certain amount of time, which we denote as the shot
duration. It is defined as a content-dependent function,

t = τ + tcAc + tbAb, (9)

where τ = 2 is a bias factor. Ac and Ab are the areas of comic
characters and balloons, normalized to the area of key window.
tc and td are weighting coefficients, balancing contributions
of comic characters and balloons. Since more time is usually
required for readers to read text in balloons than to view comic
characters. Our implementation uses tc = 1 and tb = 3. These
parameters can be adjusted according to the user’s preference.

C. Adding Special Effects

To produce more dynamic animations, we add three spe-
cial effects to the animations, shaky effect, motion blur and
moving motion lines. Shaky effect results from simulating
movements of a handheld camera, to increase the tension in
the animation [32]. To do this, we track the camera offsets in
video footage with a shaking camera, and apply the offsets
to the window when panning or zooming in/out within the
panel. This effect is applied when the anxious emotion state
is detected. Motion blur is achieved by applying a zoom radial
blur filter on a foreground character, in cases of zooming in
and out when fast motion is detected. Moving motion lines
are simulated using user-provided foreground and background

masks to enhance the perception of the comic character’s mo-
tion, when parallel motion lines are detected. Implementation
details of the effects are included in the supplemental.

VII. RESULTS AND EVALUATION

A. Comparison to Prior Works

We compared our approach against two previous works
that use the Ken Burns effect on still images: Microsoft
Photo Story [24] (MPS) and Moves-on-Stills [14] (MoS).
MPS generates an animation, like ours, by randomly panning
and zooming over photos. MoS animates comics using eye
movement recordings from multiple users.

We tested the three approaches on three manga series of
different genres, 18 pages from “Fairy Tail” (action), 16 pages
from “Slam Dunk” (sports), and 21 pages from “Strobe Edge”
(romance). For each manga series, we generate one animation
using each of the three methods. Note that these pages are
not part of the training set used in Section V-C. We have
chosen these manga series because they are representative and
stylistically distinctive: “Fairy Tail” comprises many visual
effects (e.g., motion lines and sound words); “Slam Dunk”
contains detailed foreground characters and cluttered back-
ground; “Strobe Edges” is characterized by abstract characters
and elaborate background textures.

To create animations using MPS, we automatically seg-
mented the panels on all pages into individual photos, imported
them into MPS, and created a video story by following the
instructions of its wizard. For one manga series, this process
only took about 10 seconds, with the motion and duration
of the camera set automatically. To create animations with
MoS, we recorded eye gaze data from 5 experienced manga
readers viewing the testing pages, using a Tobii infrared eye
tracker with the same experiment setup as in [14]. Acquiring
eye tracking data from 5 viewers on one manga series (∼20
pages) took about 1 hour, including device setup and recording
time. For comparison, our approach took an average of 3.5
minutes (including 2.5 minutes for user assistance in correcting
erroneously detected elements before the semantic estimation)
to process one manga series (∼20 pages). The precision rates
of our panel, balloon and character detectors on the testing
dataset are 87%, 82%, and 83%, respectively. While the
accuracies of our element extraction are not considerably high,
user intervention is quite minimal, especially compared to the
efforts required to manually segment all the elements, which
typically takes 25 minutes for about 20 pages. In addition,
errors in the element extraction step are fixed by users before
the semantic estimation, and therefore would not affect the
quality of final animation.

For a fair comparison in the user study, some special effects,
including motion blur and moving motion lines, are not used
in our approach as other methods do not naturally support
these effects. Moreover, all the methods use the same panel
display order (i.e., reading order of the panels as computed
in Section IV-A). For transitions between panels, only cross-
fading is used. Figure 8 shows some results from element
extraction, semantic estimation and camera movement simu-
lation. Note that all our results shown in this paper and in the
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Fig. 8: Results of element extraction, semantic estimation and camera movement simulation on two manga pages (one page
per row). For each page, extracted panels, comic characters and balloons are outlined in green, cyan and magenta, respectively.
Estimated motion/emotion states are in the upper-left corner of each panel. For camera movement simulation, each rectangle
represents a key window, with the color indicating its temporal order (orange = 1st, green-yellow = 2nd, green = 3nd). Arrows
indicate the motion trajectories of the window, with a larger size indicating a higher speed. Dashed lines suggest the presence
of shaky effect. Note that to reduce clutter, cross-panel movements of the framing window are not visualized in these examples.
The manga pages are from “Fairy Tail” (top) and “Slam Dunk” (bottom).

accompanying videos are generated using the semantics that
are automatically inferred by our semantic estimator.

User Study. We conducted a perceptual study to evaluate
the effectiveness of our method versus the other two methods
(MPS and MoS). Our study includes 20 participants, con-
sisting of 10 experienced manga readers and 10 with limited
experience in reading manga. Each participant compared the
animation methods on three manga series of different genres.
In each comparison, the participants were presented the three
animations (ours, MPS, MoS) one-by-one with randomized
presentation order, and asked to rank their preferences on
the animations and rate various aspects of the animations,
including storyline and pacing. To avoid participant frustration,
we limited the length of each animation to be within 3 minutes
by using only 5 or 6 contiguous pages of each manga series.
See the supplemental materials for some example animations
used in the study. After the study, we obtained 60 comparisons

in total (3 manga series by 20 participants). At the end of
viewing sessions, the participants were also asked to rate how
well they appreciated such manga animations compared to
traditional manga pages, on a scale of 1 to 5 with 1 being
the least and 5 being the most. We end up with an average
rating of 4.3, implying that the participants are in favor of the
dynamic form of manga.

Results. As shown in Figure 9, the participants are, in
general, very enthusiastic about the animations generated
by our approach, and rank them as the most effective in
storytelling 88% of the time (53 out of 60), with only 7
cases where the MoS animations are rated higher. Also, as
reflected in the ratings, the main comment about MoS is that
it cannot express the pace of the story, mainly due to the lack
of semantic understanding of the contents being animated. The
7 cases where MoS was ranked higher than our approach were
all on the animations of “Strobe Edge”, which is a romantic
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Fig. 9: Results of the user study to compare our method with
prior methods. Left: preference ranking of our approach versus
MPS and MoS. Ours are consistently ranked higher than others
(Friedman test, p < 0.05). Right: participant ratings for the
effectiveness in revealing storyline and story pace. The ratings
of the three methods in storyline and pace have statistically
significant differences (one-way repeated measures ANOVA,
p < 0.05). Our method is rated higher in all aspects than
the other two methods with statistical significance (Wilcoxon
signed-rank test, p < 0.05)

manga series. The slow pace of this romantic manga series
leads to animations comprising slow camera movements with
constant speed. In this case, the advantage of our approach
in varying the camera speed and movements according to
the semantics is not obvious, and thus the participants are
likely to randomly select between the two methods. MPS
is always ranked third in our study. The random nature of
MPS breaks the structure of the manga contents, which are
designed by artists to develop the storylines. Thus, MPS fails
to generate meaningful animations from manga. In contrast
to MPS and MoS, our approach faithfully reproduces the
story pace by using the inferred motion and emotion states,
while generating meaningful camera movements consistent
with film production. When rating the animations of three
different manga series, the two groups of readers (expert
and inexperienced) have the same ranking. On “Strobe Edge”
(romance), the rankings of the two groups only differed in one
comparison. This shows that our animations are appreciated by
both experienced and inexperienced manga readers.

B. Effect of Semantic Estimation and Camera Movement

We evaluate the contribution of our semantic estimation and
our camera movement simulator to the final animations. For
these purposes, we compare our method (method A) to three
variants of our method:
• Method B: we use ground-truth semantic labels rather

than the estimated ones. By comparing with this method,
we can test whether any errors in our estimated semantics
affect the perceived quality of the animations.

• Method C: we disable the semantic estimation, and gen-
erate animation using elements detected by our element
extractor and a naive camera movement technique with
constant speed. For the naive camera movements, we
simply pan the framing window across ROIs in their
reading order. By comparing with this method, we can
test the contribution of using semantics to the final
animations.

• Method D: we replace our camera movement simulation
(used in method A) with the naive camera movement
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Fig. 10: Results of the user study to evaluate individual
components of our method. Left: preference ranking of our
method (method A) versus its variants,i.e., our method with
ground-truth semantic labels (method B), our method without
semantic estimation (method C), and our method with naive
camera movements (method D). Right: participant ratings
for the effectiveness in presenting storyline and story pace,
and engaging viewers. For all the aspects, the ratings for
the different methods have statistically significant differences
(one-way repeated measures ANOVA, p < 0.05). The ratings
of our method are similar to those of method B (Wilcoxon
signed-rank test, p > 0.05), which are higher than method C
and D (Wilcoxon signed-rank test, p < 0.05)

strategy. By comparing with this method, we can test the
contribution of our camera movement simulator to the
final animations.

We used the same procedure and set of manga series as
in Section VII-A to perform a user study with 20 participants.
Figure 10 shows the results from the user study. There is
no significant difference between the ratings of our method
and the variant with ground-truth semantic labels (A vs. B,
Friedman test, p > 0.05). This implies that the errors in the
semantic estimation step would not significantly affect the
quality of final animations. On the testing dataset, our motion
and emotion estimators achieve the accuracy rates of 87% and
88%, respectively. In most failure cases, the motion estimator
misclassified “slow” m3 as “medium” m2, while the emotion
estimator misclassified “excited” e4 as “anxious” e3, largely
because the two motion or emotion states have similar visual
features. These errors do not lead to obvious artifacts in the
final animations, perhaps because people tend to notice high
contrast between two obviously different states (e.g., “fast”
and “slow”), and are less sensitive to differences between two
similar states (e.g., “medium” and “slow”).

From the participants ratings, we can see that our estimated
semantics are important for expressing the pace of the story
(A vs. C), while our well-designed camera movements are
essential for revealing the storyline (A vs. D). Moreover, well-
designed camera movements are important for engaging view-
ers, since they change with contents and semantics, resulting
in more versatile perceived motion, as compared with the pan-
based naive camera movements.

C. Comparison to Professional Animator

We also compared our animations against those by a pro-
fessional animator. In particular, we recruited a professional
animator (Expert) who has more than 3 years of experience in
creating 2D animations and is an experienced comic reader.



11

25 24
41

0

20

40

60

Ours Tie Expert

Vo
te

s

1 2 3 4 5

Storyline

Pace

Average Ratings

Ours
Expert

Fig. 11: Results of the user study to compare the animations
by our method (Ours) and by professional animator (Expert).
Left: the distribution of participant votes in the pairwise
comparisons. The professional animations are marginally pre-
ferred over our animations (Chi-square test, p = 0.05). Right:
participant ratings for the effectiveness in presenting storyline
and story pace. For storyline, the ratings of our method and the
professional animator are not significantly different (Wilcoxon
signed-rank test, p = 0.06). For pace, the ratings of the
professional animator are higher than those of our method
(Wilcoxon signed-rank test, p < 0.001).

The animator was asked to create animations from a set of
input manga pages that well convey the storyline and pace of
the story. We used the same 3 manga series as Section VII-A.
For each series, the animator created an animation from 5 or
6 contiguous manga pages using their favorite animating tool,
which required manually specifying the camera movements of
each panel. For a fair comparison, the animator was only al-
lowed to use the same set of camera movements as our method
(i.e., panning, zooming and shaking), and was encouraged to
vary camera movement speed according to the storyline. The
animator spent an average of around 30 minutes on processing
one manga series (5 pages). An example animation created by
the animator is shown in the supplemental materials.

We then performed a user study to compare our animations
against those by the professional animator via pairwise com-
parisons. Our study involves 30 participants, half of whom
are experienced manga readers, while the other half have
limited manga reading experience. For each manga series,
each participant compared our animation with the professional
animation, with animations presented one after another in
random order. The participants were then asked to select their
preferred animation and rate the storyline and pace of the
animations on a scale of 1 to 5, with 1 being the worst
and 5 being the best. A “tie” option could be selected if
two animations are regarded as having similar quality. We
ended up with 90 comparisons in total (3 manga series by
30 participants).

The results are shown in Figure 11. In general, the profes-
sional animations are preferred over our animations, and such
preference is marginally significant. Our animations are able to
convey the storyline of input manga pages as effectively as the
professional animations. On the other hand, the professional
animations are perceived to be better than our animations in
expressing the story pace. However, it is worth noting that
our method can generate animations with significantly less
time (∼3.5 minutes for 20 pages) and requires little manual
effort and no animating expertise, as compared with the
labor-intensive animating process by the professional animator
(∼120 minutes for 20 pages).

D. Applications
Automatically converting manga contents into an animation

will benefit many approaches to manga consumption. To show
this potential, we demonstrate two applications of our method.
First, our animation can be used to create a dynamic comic
reading experience on mobile devices. Second, our method
can be used to create comic trailers with little post-process
authoring.

1) Mobile Comic Reading: To read comic pages that do not
fit within the small screen of smartphones or tablets, readers
are forced to frequently pan and zoom on the screen. Our
animation displays a local portion of the entire artwork at
one time, and contains a sequence of automatically performed
panning and zooming operations on comic pages. Hence,
our animation can be naturally exploited to facilitate comic
reading on mobile devices. Instead of directly playing an
animation, users manually advance the animation so that they
can control their own reading speed. The accompanying video
shows a demo of this manually-advanced dynamic manga on
a smartphone.

To evaluate whether our manually-advanced dynamic manga
(MDM) improves the mobile reading experience, we con-
ducted a user study, where subjects were asked to compare
MDM to automatically-advanced dynamic manga (ADM, i.e.,
animation generated by our method), sequential manga panels
(SMP, i.e., a sequence of static panels that are displayed one-
by-one in their reading order, which is usually adopted to facil-
iate comic reading on mobile devices [5], [1]), and traditional
pages (TP, i.e., manual pan and zoom). The study included
20 participants, all of whom have prior experience in reading
manga or other types of comics. Each participant viewed 6
manga pages using the 4 comic mediums (MDM, ADM, SMP,
and TP) on a smartphone with a 5.7” screen of resolution
1920 × 1080, and then answered three comprehension-based
questions about the manga contents (e.g., what is the relation-
ship between comic characters A and B: friend or enemy?).

For a fair comparison, the mediums were presented in a
randomized manner. The participants were allowed to adjust
the playing speed for MDM and ADM to reflect their own
reading speed. At the end of each viewing session, we asked
the participant to rank the four mediums in terms of their
preference for manga viewing on mobile devices, and leave
open comments regarding their ranking.

Figure 12 shows the preference ranking by the participants.
Overall, MDM is rated higher than the other options. By
analyzing the open comments, we found that most participants
liked the animated motion in MDM and ADM, thinking that
the motion gave them an interesting and engaging reading
experience and minimized the interaction overhead of reading
traditional pages on a smartphone of limited display size.Most
participants preferred MDM over ADM because it allowed
them to interactively control the reading pace, which was
commented as being very helpful for addressing individual
reading speeds. The detailed user comments are included in
the supplemental material.

2) Comic Trailer: A manga trailer is a short movie of
selected manga contents, which is designed especially for ad-
vertising a manga series [23]. Given an animation generated by
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our method, a manga trailer can be easily produced using video
editing software for post-processing, e.g., varying the playback
speed and incorporating a soundtrack. In the supplemental
materials, we show a comic trailer produced in this way. Our
method reduces the cost of manga trailer production, making
it practical for manga retailers to create customized trailers
based on individual user preferences.

E. Application to Western Comics

The increased popularity of manga has motivated comic
artists across the world to adopt the visual language of manga
in their own artworks, blurring the boundary between manga
and other comics. Hence, our approach is directly applicable
to animating other types of comics that exhibit similar char-
acteristics to manga (e.g., using motion lines to depict fast
motion and using oddly shaped balloons and panels to stress
the degree of motion and emotion). We show an animation
generated from western comics in the supplemental.

VIII. CONCLUSION

We have presented an approach to convert manga pages to
animation via camera movement. This is made possible by
automatic extraction of basic comic elements, the proposed
graphical model that reliably estimates per-panel motion and
emotion states from low-level visual features, and camera
movement simulator based on filming techniques. The result
is a plausible and consistent set of camera movements, which
yields an animation that effectively tells the story. Our ex-
periments on manga series of different genres show that, in
comparison to previous methods, our approach can quickly
generate more effective storytelling animations. Futhermore,
we have also demonstrated the usefulness of our animations
in improving mobile comic reading and enabling quick pro-
duction of comic trailers.

Limitation and future work. Our approach has several
limitations, and thus can be improved in a number of ways.
First, in this work, we do not animate the characters them-
selves. This can be done by segmenting a comic character
into different parts that can be properly deformed, which
we would like to explore in the future. Second, our camera
movement simulation currently relies on some heuristic rules.
One interesting direction is to understand how animators

set up camera movements when interpreting storyboards into
motion pictures, and use a data-driven strategy to learn how
various visual and semantic factors are correlated with camera
settings during animation production. Such knowledge can
be exploited to enable simulations of more nuanced camera
movements in our animations. Third, deploying our system as
a web service would allow any users to convert their favorite
comics into animations online. Because creating animations
with our system requires users to semi-automatically label
foreground objects, our online system can serve as platform for
collecting a database of foreground objects labeled by different
users. Analyzing such a large-scale database can shed light on
what features characterize foreground objects in line drawings,
and thus enables design of better algorithms for foreground
segmentation in line drawings.
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