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Object-level Scene Context Prediction
Xiaotian Qiao, Quanlong Zheng, Ying Cao, and Rynson W.H. Lau

Abstract—Contextual information plays an important role in solving various image and scene understanding tasks. Prior works have
focused on the extraction of contextual information from an image and use it to infer the properties of some object(s) in the image or
understand the scene behind the image, e.g., context-based object detection, recognition and semantic segmentation. In this paper, we
consider an inverse problem, i.e., how to hallucinate the missing contextual information from the properties of standalone objects. We

refer to it as object-level scene context prediction. This problem is difficult, as it requires extensive knowledge of the complex and
diverse relationships among objects in the scene. We propose a deep neural network, which takes as input the properties (i.e.,
category, shape, and position) of a few standalone objects to predict an object-level scene layout that compactly encodes the
semantics and structure of the scene context where the given objects are. Quantitative experiments and user studies demonstrate that
our model can generate more plausible scene contexts than the baselines. Our model also enables the synthesis of realistic scene
images from partial scene layouts. Finally, we validate that our model internally learns useful features for scene recognition and fake

scene detection.

Index Terms—Scene context, object inference, object properties, scene understanding.

1 INTRODUCTION

A scene context refers to how the objects of interest are related
to the surrounding environment, i.e., the spatial relations among
the co-occurring objects around the objects of interest. Previous
works have attempted to leverage the scene contextual information
already existed in an image to infer the properties of some objects
of interest in the image, e.g., object detection [1], [2], recognition
and segmentation [3], [4], [5], [6], and visual representation
learning [7]. However, an unexplored problem is to hallucinate
the unknown scene context of some given objects in the image
(i.e., to anticipate what and where the missing objects are). Given
only a few foreground objects, humans are remarkably capable
of inferring the unknown scene context, by relying on extensive
commonsense knowledge of our visual world. For example, as
shown in Figure 1, given a foreground object, we humans can
reason about multiple plausible environments surrounding it. The
properties of the given object, i.e., object category, shape, size and
position, provide strong hints about what and where the missing
objects may appear in the scene.

Thus, we are interested in a fundamental question of whether
machines can replicate such a scene context inference capability
to predict what and where the missing objects are. We believe that
such a capability can benefit the vision community and be applied
to many scene generation and recognition tasks. For example,
state-of-the-art methods for caption-conditioned image generation
need the full scene context to generate realistic images. However,
developing a model for scene context prediction can be challeng-
ing, as natural scenes often contain a rich variety of semantic
objects with complex spatial relations among them. Objects can be
at various locations in the image with different scales and shapes.
In addition, this problem is inherently ambiguous, as the same
objects can have multiple semantically plausible scene contexts. It
is difficult to evaluate which scene context is more appropriate.
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Fig. 1: Inferring scene contexts from a standalone object. A
standalone object provides rich information for predicting its scene
context (i.e., other objects that co-occur with it and their spatial
relations). While the pose and position of the person in the image
suggest that the scene may be related to sports activities, the
presence and position of the person provide hints as to what and
where other objects can appear (e.g., the sky in the upper part of
the image, and the sea in the lower part of the image).

In this paper, we propose a new task of scene context pre-
diction from standalone objects. Given the categories, shapes
and positions of one or more foreground objects, we propose
a novel model to predict the scene context for these objects.
Instead of directly hallucinating low-level pixels, the context
predicted by our model is in the form of an object-level scene
layout. Although lacking detailed object appearances, such a mid-
level representation can capture the important semantics shown
to be sufficient to generate photo-realistic images [8] as well
as build scene structures [9]. Our model has three modules: a
shape generator, a region generator, and a compositor. The shape
generator aims to generate object shapes of different categories.
The region generator aims to generate object bounding boxes to
indicate possible object positions and sizes. The compositor aims
to generate a scene layout that represents the scene context in
coherent with the input objects, by fusing the outputs from the
two generators.

To evaluate the effectiveness of our model, we conduct quan-
titative experiments and user studies on the pre-processed COCO-
Stuff dataset [10]. Experimental results show that our model can
generate more plausible scene layouts that put the input objects
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into the right context, as compared with the baselines. In addition,
we demonstrate wide applications of our model. First, we show
that our model enables an image synthesis approach that can
generate full scene images from partial scene layouts. Second, we
validate that learning to hallucinate scene contexts can internally
obtain useful features for scene recognition. Finally, we show the
benefits of our model on fake scene detection.

In summary, the main contributions of this paper include:

o To our knowledge, we make the first attempt to address the
problem of predicting the unknown scene context where some
objects of interest reside in.

e We propose a novel neural network model to predict object-
level scene contexts from just standalone foreground objects.

o We demonstrate the benefits of scene context prediction on a
variety of tasks, including image synthesis, scene recognition
and fake scene detection.

A preliminary version of this work was presented as an oral
paper in [11]. This submission extends [11] on both methodology
and experiments in four aspects. First, we add a related problem on
layout generation in Section , and restructured the section. Second,
we design a zoom-in strategy to enlarge the feature maps for small
objects, so that the network can obtain meaningful object features
from the encoder. Third, we add a variety loss to improve the
diversity of the predicted scene contexts. Fourth, we perform more
experiments to evaluate the effectiveness of our model (including
comparison to three more baseline methods, diversity evaluation,
and additional ablation studies), and explore the application of our
model to fake scene detection and feature visualization.

2 RELATED WORK

In this section, we review related works on scene context model-
ing, layout generation, context-based representation learning, and
context-based image manipulation.

2.1 Scene Context Modeling

The scene context of an image contains rich information about
how objects and scenes are related to each other. Cognitive science
studies have shown that contextual information plays a crucial role
in human visual recognition [12], [13]. There are many types of
context information, including visual context [14], global scene
context [15], relative location [16], and layout [17].

Contextual information has been exploited in many vision
tasks to learn semantic features and improve visual understanding
performance. On the one hand, context is essential for feature
learning. For example, Pathak et al. [7] proposed a context
encoder to learn high-level semantic features for image inpainting.
On the other hand, scene context has been shown to be effective in
many vision tasks, such as recognition, detection and segmentation
[4], [6]. Multiple contexts can also be combined to improve
performance. Choi er al. [18] proposed a graphical model to
exploit multiple contexts in order to identify the out-of-context
objects in a scene. Izadinia ef al. [19] encoded the scene category,
the context-specific appearances of objects and their layouts in
order to learn the scene structure. Chien et al. [20] proposed the
ConvNet to predict the probability of a pedestrian located at some
location in the image. Wang et al. [21] used a variational auto-
encoder to show the possibility of reasonable nonexistent human
poses in a scene.

All these works use the existing scene context of the image as
an additional cue to reason about the properties of foreground

objects of interest. In contrast, our objective is fundamentally
different from these prior works. Conceptually, we are proposing
to address an inverse problem, i.e., to infer the missing scene
context from the properties of the given foreground objects.

2.2 Layout Generation

In recent years, we have witnessed a rising interest in scene layout
generation in the graphics and vision community. Our work bears
some high-level resemblance to the recent efforts on data-driven
indoor scene synthesis. These works attempt to model object
arrangements with undirected factor graphs [22], activity graphs
[23], and stochastic grammars [24]. Unlike these works that built
context information from pair-wise object relationships, Wang et
al. [25] introduced a deep neural network to learn the priors of
object placements for indoor scene synthesis. Similar to [25] from
a high-level perspective, we also use deep neural networks to learn
priors on the spatial structure of objects from image data in order
to synthesize semantic layouts. However, unlike [25] which aimed
to generate the arrangement of a sparse set of 3D objects, we aim
to predict a dense, pixelwise scene layout. In addition, we deal
with a more challenging problem as we only use the given objects
as input but their method assumes the scene types to be known.

There are also few works on outdoor scene layout generation.
In Li et al. [26], the LayoutGAN model was proposed to map a
random layout (a set of elements with random class labels and
geometric parameters) to a refined layout. In Jyothi et al. [27],
the LayoutVAE model was proposed to generate stochastic scene
layouts given an input label set, i.e., categories of all the elements.
Unlike these works on outdoor scene synthesis, the input to our
method only contains a few standalone objects, from which a
complete layout needs to be inferred. In addition, our method is
able to predict detailed and complex object shapes for pixel-level
scene layouts, whereas the prior works simply model objects as
geometric primitives (e.g., rectangles).

2.3 Context-based Representation Learning

There have been some efforts on visual representation learning
via context prediction. Mikolov et al. [28] proposed the skip-gram
model to learn a word representation by predicting surrounding
words of a single word. Doersch et al. [29] learned an image
representation via predicting the relative positions of patches
in an image (i.e., spatial context). Vondrick et al. [30] learned
to anticipate the visual representation in a future frame of an
unlabeled video (i.e., temporal context). In our work, our ultimate
goal is not to learn a visual representation, but to predict of the
surrounding environment of some standalone objects.

2.4 Context-based Image Manipulation

A number of works have investigated how to use context for image
manipulation tasks. Some works used context as a prior to retrieve
and composite the assets. Tan er al. [31] used CNN features to
capture local context for person composition. By jointly encoding
the context of foreground objects and background scenes, Zhao et
al. [32] learned an object representation for compatible foreground
object retrieval based on a given background image. However, the
quality of the generated image depends on the retrieval database.
The retrieved assets may not fulfill the user’s requirement and
generate unrealistic compositions.

Other works represented the context as a scene layout and
learned a generative network to manipulate the synthesized image.
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Fig. 2: Overview of our network architecture. Our model takes as input an object layout encoding the properties of input objects and
generates a scene layout representing the scene context. We use the category classifier to pre-train the encoder to obtain the object
representations. The object representations and a noise vector are concatenated and passed to the shape generator and the region
generator. The shape generator generates the shapes of all C' object categories, while the region generator generates the parameters and
confidence values of B bounding boxes to represent the potential region proposals for each category. The boundary thickness of each
bounding box indicates the confidence score of the box. The bounding boxes are then used to warp their corresponding shapes to a
coarse scene layout, which is then refined by a compositor to output a final scene layout. Finally, a shape discriminator and a layout
discriminator are introduced to classify the generated object shapes and scene layouts, respectively, as real or fake.

Wang et al. [33] proposed a GAN model to synthesize and ma-
nipulate high resolution images from the scene layout. Hong et al.
[34] constructed a scene layout as an intermediate representation
for image manipulation from text descriptions. Johnson et al. [35]
proposed a graph convolutional neural network to generate images
from scene graphs.

In contrast to these existing works, our proposed work can
provide a new approach for users to specify the structure of the
output image to be synthesized. Instead of asking users to specify
all objects in the image (as a semantic map or a coarse layout map,
or vaguely specifying the image content through text), they only
need to specify the properties of the key objects that they concern
about in the form of semantic objects. Our approach can generate
diverse plausible scene layouts, which can be used to synthesize
realistic full scene images. Thus, our model can be considered as
complementary to existing image synthesis methods.

3 METHODOLOGY
3.1

Our goal is to develop a deep neural network that takes the
properties of one or more standalone objects as input to generate
a scene context around the given objects, which contains the other
objects that are likely to co-occur with the given objects. The
whole framework is shown in Figure 2. We encode both the input
objects and the predicted scene context using object-level semantic
layouts, which can compactly describe the classes, shapes, and
positions of the objects in a scene layout. In other words, given an
input object layout X, our model learns a function f to generate
a full scene layout X, = f(X,).

Problem Formulation

3.2 Scene Context Prediction Network

Figure 3 shows the structures of the modules used in the proposed
network architecture.

Encoder. The input to the encoder is an object layout, X, €
{0, 1}H*WXC where H and W are the height and width of the

layout, respectively, and C'is the number of object categories. We
encode each pixel in the input object layout as a one-hot vector
to represent the object category of the pixel. A vector of all zeros
represents that the pixel belongs to the unknown category. Each
of the C channels in X, specifies the shapes and positions of
the objects from the category. The encoder contains five 3 x 3
stride-2 convolutions. All the convolutional layers are followed
by batch normalization and Leaky-ReLU, except for the first and
last layers where only Leaky-ReLU is applied. The output of the
encoder is an object representation of size 4 x 4 x 512 from X,,.
In order to learn a useful object representation, we add a category
classifier to predict the presence of each object category in the
scene context. Similar to [36], our category classifier contains two
fully connected layers, followed by a Sigmoid layer which outputs
a C-dimensional vector.

We note that the encoder tends to extract a meaningless object
representation if the input layout contains only a very small object.
Such an object representation cannot be used to reliably predict a
potential scene context. Inspired by the zoom-out and zoom-in
architecture used in [37] for tiny object detection, we re-scale the
input object layout to enlarge the spatial resolution of the small
objects. However, unlike [37] that detects objects from a complete
scene image, we only take an object layout as input. As the feature
maps of an object layout contain much less information than those
of a complete scene image, we cannot directly enlarge the feature
maps as in [37]. Hence, we first divide the input object layout
into 9 x 9 grid cells. Based on the cells overlapped by the object,
we select a minimum rectangle region that contains the object.
We then re-scale the selected region into the same size as that of
the input layout, and pass it through another encoder that has the
same architecture as the one described above to obtain the zoomed
object representation. Finally, we concatenate the zoomed object
representation and the original object representation, and use an
additional layer with 3 X 3 stride-1 convolution to obtain the final
object representation.

Shape Generator. To increase the diversity of the generated
layout, we add a noise vector 2z; on top of the object represen-
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Fig. 3: Details of various modules used, including encoder, shape/region generators, compositor, and shape/layout discriminators.

tation by spatial duplication and feature channel concatenation,
resulting in concatenated features F'. We then feed I’ to the
shape generator. The shape generator module is composed of
three de-convolutional layers. Each of the first two layers is
a 4 x 4 de-convolution with a stride of 2, followed by batch
normalization and ReLU. The last layer is a 1 X 1 convolution
followed by Sigmoid nonlinearity. The output is a soft binary
mask M € [0,1]16*16XC representing the shapes of all object
categories. Note that our shape generator can naturally handle
multiple occurrences of a single object class. In such a case, the
shapes of these objects will appear as a group of connected or
disjoint masks in the same channel of M.

Region Generator. The input to the region generator is the
same as that of the shape generator. The region generator receives
F and predicts B region proposals for each of the C object
categories. Each region proposal is represented by a bounding
box with four parameters (x,y,w, h) and a confidence score s.
(x,y) refer to the center location of the box. (w, h) refer to the
width and height of the box. The confidence value represents the
probability that the bounding box covers an object. Thus, the
output of the region generator is a tensor of size B x 5 x C,
where 5 refers to the four parameters plus the confidence score.
Note that to handle multiple instances of a single object category,
we treat them as a group and use a single bounding box for them
in training and testing. The region generator has two 4 X 4 stride-
2 deconvolutions, several residual blocks and 3 X 3 convolutions,
and two fully connected layers. Each residual block consists of a
1 x 1 convolution, a 3 X 3 convolution and a skip connection. The
last fully connected layer has 1080 units that are reshaped to B
X 5 X 72, which encodes the parameters of the bounding boxes
of all the 72 categories (i.e., 5 parameters per bounding box x B
bounding boxes per category).

Compositor. To combine the predicted shape masks and object
bounding boxes coherently into a scene layout, for each object
category, we warp the generated shape masks to the position of
the corresponding bounding box using the bilinear interpolation
operator in the spatial transformer network [38]. Note that some
artifacts like unlabeled regions and tiny objects may exist in
the fused coarse scene layout. In addition, the generated object
bounding boxes may overlap with each other, causing occlusions
among different objects. To address these problems, we further
convert the coarse layout to a dense pixelwise scene layout
using the cascaded block [39]. The compositor contains two 3

X 3 stride-2 convolutions, and two cascaded blocks [39]. Each
cascaded block takes as input the feature map from the previous
module and a rescaled coarse scene layout to produce a refined
layout. It is composed of a bilinear upsampling and then two
3 X 3 convolutions. All the convolutional layers in the compositor
are followed by batch normalization and Leaky-ReLU. The final
output of the compositor is the refined scene layout of size
128 x 128 x 72.

Discriminators. For a given input (e.g., a standalone object on
a canvas), there may be multiple scene layouts that are plausible
and consistent with the input. To handle this multi-modal issue, we
introduce two additional discriminators, as inspired by the recent
success of adversarial learning approaches [8], [40]. One is a
shape discriminator Dj,qpe, and the other is a layout discriminator
Diayout- The input to the shape discriminator Dgpqpe is the
generated shape masks m/C or the real shape masks m.. The input
to the layout discriminator Djqy 0. is a generated scene layout or a
real scene layout. The shape discriminator first processes the input
with a series of 3 x 3 stride-2 convolutions. All the convolutional
layers are followed by batch normalization and Leaky-ReLU,
except for the first layer where only Leaky-ReLU is applied. A
4 x 4 convolution and a fully connected layer are then applied
to output the probability of the input being real or fake. Both
layers are followed by Leaky-ReLU. The layout discriminator
shares a similar architecture with the shape discriminator, but has
a different number of convolutional layers.

3.3 Training

Due to the complexity of our network, it is difficult to directly
train our model end-to-end. Thus, we pre-train the encoder and
the category classifier to obtain the object representation. Since the
zoom-in strategy is not differentiable, we first obtain the zoomed
object representation via preprocessing as described in Section 3.2.
We then concatenate the zoomed object features and the original
object features as the final object representation from the encoder
for training. Let | = {l. € {0,1},¢ € C} be the ground truth
object categories of an image. We use the cross-entropy loss L
for the category classifier as:

Lcls = - Z[lc 1ngc + (1 - lc) IOg(l - pc)]a
ceC

6]

where [, = 1 if the image contains object category c. p. is the
predicted probability for c.
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For the region generator, we use t = (x,y, /w,vh)T and s
to denote the parameters and the confidence score of the predicted
bounding box, respectively. We define the loss as:

C
bj A bj ~
Lyox = Y > (077 |[ti; — tij|I> + M) Isi5 — 8i41%),
i=1jeB;
2

where ¢ ranges over all object categories and j ranges over all the
bounding boxes of category i. fi’j and §; ; are the parameters
and the confidence score of the ground truth bounding box,
respectively. pff}] is an object indicator that is 1 when the bounding
box covers a ground truth object and O otherwise. Since most
generated bounding boxes do not cover any ground truth objects,
we introduce a class re-balancing function A(p) to prevent the
model from predicting a zero confidence score for most bounding
boxes, where A(p) = 1if p=1and A(p) =0.1if p = 0.

For the shape generator, let m~pqie(m) be the generated
shapes. Its loss is defined as:

ori

shape :E"prfake(’m) [LCTS (ma Th)]+

Ernpsane(m) [(Dshape (m) — 1)°].

The first term penalizes the difference between each generated
shape m and its ground truth 7 using a pixelwise cross-entropy
loss L¢rs. The second term encourages the shape generator to
produce realistic shapes to fool the shape discriminator. We use L2
norm instead of log, as in LSGAN [41], to stabilize our training.

Note that GAN-based frameworks often suffer from the mode
collapse problem, where the generator only samples from a single
or few modes of the data distribution and ignores other modes. To
encourage the generator to produce more diverse results, we add a
variety 108s Lyqgricty as in [42]:

Ldiversity _ dI (G(C, Zl)? G(C, ZQ)) 7 (4)
shape dz (Zla 22)

where ¢ is the object representation. z; and zp are two noise
vectors. dj is the L1 norm distance between two generator outputs
in the image space. d, is the L1 norm distance between the noise
vectors in the latent space. Here, we aim to maximize the ratio of
dy to d,. The loss induces a large penalty if two different latent
vectors are mapped to similar outputs, and thus encourages the
generator to spread its output distribution to cover the space of
possible scene layouts. The final loss for the shape generator is:

ori diversity
shape + /\dLshape ’ (5)

3)

Lshape =

where )\ is the weight to control the diversity.
For the shape discriminator, its adversarial loss is defined as:

ng,pe :Et~prmz(t)[(Dshape(t) - 1)2]+

(6)
IEImprakc (m) [Dshape (m)2] ;

where t ~ Dy.cq(t) are real shapes.

Finally, the losses for the output scene layout and the layout
discriminator are similar to Eq. 3 and 6, respectively, except that
object shapes are replaced with scene layouts.

3.4

The detailed network architecture is described in Section 3.2. The
input object layout is resized to 128 X 128 by nearest interpolation.
To help the network converge, we first train the category classifier
to obtain the object representation. To obtain the values of the

Implementation Details

object indicator pff;-], which are used in the loss in Eq. 2, we
follow the approach of YOLO [43]. In particular, in each iteration
during training, we feed an input into our network to predict the
region proposals for all object categories. A region proposal of
a category is labeled as positive (i.e., pf’l}j = 1) only if it has
an intersection over union (IOU) of at least 0.5 with any ground
truth bounding box of the same category, and labeled as negative
(i.e., pfg-] = 0) otherwise. The ground truth confidence score §;
of a predicted bounding box is defined as the IOU between the
predicted bounding box and the ground truth bounding box. Note
that during training, we use the ground truth of object bounding
boxes for the compositor to generate the scene layout. During
inference, we choose the generated object bounding boxes based
on the corresponding confidence values. We use the Adam opti-
mizer [44] for optimization, and set §; = 0.5 and 82 = 0.9999 to
improve convergence during training. The learning rate is set to be
2¢~% and the batch size to 128 to stabilize training while meeting
our memory budget. We train our model for 10,000 iterations until
the model reaches convergence. In each iteration, we alternately
update the parameters of the generators and discriminators, as in
[40]. To find the optimal value of the variety loss weight A4 in
Eq. 5, we use grid search (by varying its value and choosing the
one giving the best performance). We show the performances of
our model under different values of A4 in Table 1. According to
the results, we use Ay = 0.5 for all remaining experiments.

4 EXPERIMENTS

In this section, we train our model to generate scene layouts on the
COCO-Stuff [10] dataset. We aim to show that our model can gen-
erate plausible scene contexts from the input objects with diverse
object properties. We show both qualitative and quantitative results
of our method, in comparison with the baselines, and evaluate
the plausibility and fitness of our generated scene contexts via a
user study. Finally, we show the usability of our model in several
applications, including realistic image synthesis from partial scene
layouts, scene recognition, and fake scene detection.

4.1 Dataset

We perform experiments on the COCO-Stuff dataset, which aug-
ments a subset of the COCO dataset [47] with additional stuff
categories. The dataset includes 40k training and 5k testing images
with bounding boxes and semantic layouts for both indoor and
outdoor scenes. It contains 80 thing categories and 91 thing
categories in total. Our evaluation only focuses on outdoor scene
images in the dataset, which have many complex and diverse scene
structures and thus make the scene context prediction problem
very challenging. Given the outdoor scene layouts, we only select
those with 2 to 8 objects in them. To train our network, for each
layout, we randomly select one or two objects and remove other
regions to form an object layout, which together with the original
semantic layout (referred to as scene layout in this work) form a
training pair. If a selected object covers less than 5% of the image,
we skip this object. As a result, we produce a dataset that contains
72 object categories (39 thing categories and 33 stuff categories),
with a total of 52,803 training pairs and 1,934 test pairs.

4.2 Baselines

Since we are not aware of any previous works on scene context
prediction, we compare our method with several semantic image
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synthesis models: pix2pix [8], pix2pixHD [33], SPADE [45], and
BicycleGAN [46]. pix2pix learns a generic mapping between
an input image and an output image with aligned image pairs.
pix2pixHD extends pix2pix to generate high-resolution photo-
realistic images from semantic layouts. SPADE uses a decoder-
only architecture and feeds the input into a spatially adaptive
normalization to preserve semantic information in the input. Bi-
cycleGAN extends pix2pix to produce more diverse results. We
train the baselines using our training dataset so that they can map
an input object layout to an output scene layout, as in our model.
Note that we have empirically found that the baselines tends to
produce noise, i.e., small artifacts, in their outputs. To address
this problem, we refine their results via a simple post-processing
step. Specifically, we first filter their initial results by a weighted
median filter. As object boundary is important in a scene layout,
we then apply a guided filter [48] to serve as an edge-preserving
smoothing operator, with the filtered images as guided images to
obtain the final results.

4.3 AQualitative Results

Figure 4 shows some qualitative results of our model, in compar-
ison with those from the baselines. We make several observations
as follows. First, our method can generate more visually diverse
scene layouts than the baselines. For example, from the first
to fourth columns, pix2pix and pix2pixHD always give similar
object categories and positions (e.g., grass, tree and sky), while
our results have a higher diversity in terms of object category and
position. In addition, although SPADE generates better results than
other baselines, there are some artifacts that cannot be eliminated,
e.g., the unknown region appeared in the first column. Second,
the scene layouts predicted by our model are more semantically
plausible than those by the baselines. For example, in the fourth
column, the baselines predict some unlikely spatial relations

among the objects for the scene (i.e., tennis racket in grass).
In contrast, our method predicts a playing field given the tennis
racket, which is more convincing. Third, our model is able to
generate scene contexts that respect the input objects consistently,
while the baselines fail to give reasonable results in some cases
(e.g., boat on top of the grass or the unknown region in the
first column). We further investigate how the change in spatial
relationship between the input objects may affect the outputs of
different methods. In columns 5-8, when we change the spatial
relationship of the person and the airplane from left/right (fifth
column) to above/below (sixth column) or inside/surrounding
(eighth column), the scene layouts by our model favorably adapt
to the inputs, while the baselines tend to give similar results.

Figure 5 shows a diversity evaluation of our method against
SPADE and BicycleGAN, which are designed to produce diverse
outputs. Given the same input object layout, our model is able to
generate diverse and realistic scene layouts that fit the inputs. We
observe that SPADE and BicycleGAN can also produce diverse
scene layouts, but cannot produce meaningful variations. For
example, the input in the first row is a standing person. Our model
can predict different categories, shapes and arrangements for the
surrounding objects. However, although SPADE and BicycleGAN
can also produce different surrounding object categories, such
as snow and grass, object shapes and arrangements are similar
across all the results. More importantly, results of SPADE and
BicyleGAN do not semantically match the input, i.e., the boat
is predicted to be on the grass. One possible reason is that
the generator architectures of SPADE and Bicycle are object-
agnostic and tailored to model appearance changes, and thus have
difficulty in handling our scene layout prediction task that involves
large semantic structure variations. These results show that our
method can produce more diverse scene layouts that fit the inputs,
compared with SPADE and BicycyleGAN.
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4.4 Quantitative Evaluation

We conduct evaluations using the following metrics using three
metrics, NLL, LPIPS and FID, explained as follows.

NLL. We quantitatively evaluate the plausibility of our gen-
erated scene layouts using the object pairwise relationship pri-
ors, which have been widely used in indoor scene synthesis to
characterize scene structure [25], [49]. In particular, we com-
pute the probabilities of pairwise relations among object classes
from a dataset of natural scene images, and evaluate the like-
lihood of each generated scene layout under the probabilities
to measure its quality. Formally, let C' and R be the object
categories and pairwise spatial relations, respectively. For each
pair of object classes (u,v),u,v € C, we compute a probability
of them being in a spatial relation r € R as p(r|(u,v)).
Here, we consider six mutually exclusive spatial relationships,
ie, R € {left,right,above,below,inside, outside}. Given
a generated scene layout X, we define its negative log likelihood
(NLL) as:

Z(u,r,v)ET log p(r| <ua U>)

NLL = — ,
7|

N

where (u, 7, v) iterates over all the possible class pairs denoted as
T in the layout.

We use 2-fold cross-validation for this evaluation. In particular,
we first split our training dataset uniformly into two folds. For each
fold, we train a model on it, learn the priors from the other fold,
and compute the NLL value on the test dataset against the priors.
Finally, we use the mean NLL value (IN L L,;;) over the two folds
as our metric for scene layout plausibility evaluation. In addition,
we also compute the input-centric mean NLL value (N L Lgpjcct)
to measure how well the predicted scene layouts fit the inputs.
To do this, we only consider the class pairs where the inputs are
involved in Eq. 7.

LPIPS. We evaluate the layout diversity by computing the
average LPIPS distance between the generated layouts [SO]. In
particular, we randomly chose 50 input object layouts from our test
dataset. For each input, we randomly sample 6 layouts from our

model, which are then used to construct 3 layout pairs at random.
For each layout pair, we calculate a LPIPS distance and average
over all the pairs to get an average LPIPS distance. Specifically,
we pass a pair of layouts through our layout discriminator, and use
the features from different layers to calculate the LPIPS distance.
Let X! and Y be the feature maps of layer [ for the two layouts.
The feature maps are normalized on the channel dimension to unit
length. The LPIPS score can be written as:

drpips = zz: HllWl lZJ: le(Xf,j - Yzlg)Hz ; ®)

where Xf,j represents the feature responses of X' at position
(i,7). Hy and W) are the height and width of X', respectively. w;
is a layer-specific weight. Here, we set w; = 1. A higher LPIPS
distance indicates a better diversity of the generated images.

FID. To evaluate the quality of the generated layouts, we
compute the FID value [51] between the generated and ground
truth layouts. We feed the generated layouts into the layout
discriminator and use the features from the last convolution layer
to calculate the FID value. A lower FID value indicates a better
quality of the generated layout.

Table 1 compares the performance of our model with the
baselines. Our method outperforms all baselines by a large margin
on all the metrics. This again confirms the superior performance
of our method in predicting plausible, fitting and diverse scene
contexts, in comparison to the baselines.

4.5 Ablation Study

To investigate how different components in our network affect the
generation performance, we compare several ablated versions of
our model, using the mean NLL value introduced in Section 4.4:

« No category classifier. We remove the category classifier, so
that there is no pre-training for the object representations.

o No discriminators. We remove both shape and layout dis-
criminators, relying only on the pixelwise cross entropy
losses for model learning.
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Method | NLLau | | NLLopject & | LPIPS® | FID | | Baseline | Ours | GT

Pix2pix [8] 215 211 0.012 118 Plausibility score T | 0.59 £0.15 | 0.75 £ 0.12 | 0.88 £ 0.09
pix2pixHD [33] 2.01 1.95 0.053 112 - . .

SPADE [45] 1.81 1.72 0.083 106 TABLE 2: Plau51b1l1ty scores for the baseline (Basehne), our
BicycleGAN [46] __ 211 2.03 0.102 15 method (Ours), and the ground truth (GT).

Ours (No category classifier) 1.72 1.63 0.108 104

Ours (No discriminators) 1.85 1.78 0.098 113

Ours (No shape discriminator) 1.68 1.55 0.118 101 | Ours over Baseline | Ours over GT | Baseline over GT
Ours (No layout discriminator) 1.82 1.78 0.102 109 Fitness preference ‘ 64% ‘ 45% ‘ 21%

Ours (No zoom-in strategy) 1.69 1.57 0.091 88 . . .

Ours (Ag = 0) 1.64 144 0.085 36 TABLE 3: Fitness preferences for the baseline (Baseline), our
Ours (A\g = 0.25) 1.64 1.44 0.107 83

Ours (\s — 0.75) 6 i 0.120 ol method (Ours), an.d the ground truth (GT). Each number shows
Ours A\g = 1) 1.63 1.43 0.118 98 the percentage of time that one method is preferred over another.
Ours (Full model) 1.63 142 0.121 81

TABLE 1: Quantitative evaluation of the baselines (i.e., pix2pix,
pix2pixHD, SPADE, and BicycleGAN) and our model (ablated
versions and full model). We evaluate the performance using
negative log likelihood (NLL) of the generated layouts under pre-
computed pairwise relation priors. N LL,;; reflects the overall
plausibility of an output layout, and NLLpjec; indicates the
fitness between the input objects and an output layout. F'ID
measures the visual quality of the generated layouts. LPIPS
evaluates the layout diversity.

o No shape or layout discriminator. We remove one of the
discriminators.

o No zoom-in strategy. We remove the zoom-in strategy for
small object layouts.

« Different values of the variety loss weight. We vary the
value of Ay in Eq. 5 to study its influence on the performance.
When Ay = 0, the variety loss is excluded.

From the results in Table 1, we can observe that compared with
the ablated versions, our full model achieves the best performances
on all metrics. This demonstrates the necessity of each component
in our model.

4.6 User Studies

We use Amazon Mechanical Turk (AMT) to evaluate the quality of
our results. We assess the quality of the generated scene layouts by
conducting two user studies: plausibility study and fitness study.
In the plausibility study, our goal is to evaluate whether the objects
in the generated scene layouts have plausible spatial relations. In
the fitness study, we aim to evaluate whether the generated scene
layouts provide convincing contexts for the input object(s). In both
studies, we use 50 input object layouts randomly chosen form our
test dataset. For reference, we compare our method (Ours) with
SPADE (Baseline), which performs the best quantitatively among
all the baselines in Section 4.4.

Plausibility. We ask AMT workers to judge the generated
layouts and ground truth (GT), by evaluating whether objects in
the scene layouts have incorrect relationships (plausibility). They
were given a sequence of scene layouts selected randomly from
three sources (Ours, Baseline and GT), and asked to evaluate
whether the objects in the scene layouts likely have such spatial
relations. For those scene layouts that are regarded as implausible,
they are asked to label at least a pair of objects that have
a wrong spatial relation. Each Human Intelligence Task (HIT)
contains 50 scene layouts, along with 10 duplicate layouts for
consistency check. We discard the responses from a worker who
has a consistency rate of less than 80% on the duplicate questions.
We end up with 30 workers in our experiments, with each scene
layout being evaluated by at least 10 workers.

For each scene layout, we compute the fraction of workers
who have chosen it to be plausible as a plausibility score, and

report the average score for each method in Table 2. Note that
the average score of the ground truth represents an upper bound
performance. The results show that our results are perceived to be
significantly plausible than those by the baseline and much closer
to the ground truth.

Fitness. In this experiment, the AMT workers are presented
with an input object layout, along with two scene layouts gener-
ated from the input. They are asked to select which scene layout
illustrates a more appropriate context for the input objects. In
each comparison, we display two scene layouts chosen randomly
from three sources (Ours, Baseline and GT) side by side in a
randomized order. We conduct 150 pairwise comparisons (50
for Ours vs. Baseline, 50 for Ours vs. GT and 50 for Baseline
vs. GT). We randomly divide these 150 comparisons into three
HITs uniformly. In each HIT, we add 5 duplicate comparisons
for consistency check. We discard the responses from a worker
who has a consistency rate of less than 80% on the duplicate
comparisons. We have a total of 9 workers in the experiment, and
each comparison is evaluated by 3 workers.

The results in Table 3 show that our results are preferred by
the workers most of time, compared with those by the baseline. In
addition, the workers only show a slight preference for the ground
truth layouts over our results. This implies that our results are
considered to fit the input objects better than those of the baseline,
and comparable to the ground truth.

4.7 Additional Analyses

We provide additional analyses on the performance of our model
under different factors.

Effect of object shape, category and spatial relation.
Figure 6 shows the results of our method by varying the category
and shape of the input objects as well as spatial relation among
the input objects. Our results favorably adapt to changes in
the inputs. For example, when changing an input object from
a car (third column) to an elephant (fourth column), our pre-
dicted context changes the region supporting the input object
from road (third column) to grass (fourth column). In addition,
when we change the spatial relation between a person and a
surfboard from (person, above, sur fboard) (fifth column) to
(person, right, sur fboard) (sixth column), the region below
the person changes from sea to sand accordingly.

Effect of object size. We study how our quantitative perfor-
mance varies as input object size changes. We first randomly select
one input object category (i.e., person, car or airplane), keep the
corresponding object shape fixed, and vary the size of the object.
We evaluate the performance using NLL defined in Eq. 7 and plot
the results in Figure 7. We can see that our performance degrades
if the input object size is too small or too large.

Generalization to unusual inputs. We are interested to find
out how well our model can generalize to unusual inputs. To



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

pérson pel§on

Input

skatebo s

p n| [pérson

su rd

Ours

t
p
t
tree ni

pelSon SW
S rd
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—*—person
—e—car
*—airplane|

195

1.75 . . . .
0 0.2 0.4 0.6 0.8 1

Input object size
Fig. 7: Performance vs. input object size. We use NLL to evaluate
the performance on three object categories (i.e., person, car and
airplane). The lower the score, the better the performance. The
input object size is normalized with respect to the image size to
range between 0 and 1).

investigate this, we show the results of our method in Figure 8 by
changing the category of an input object to one that is unusual to
its shape. We can see that our model can still predict proper scene
contexts by considering both the input object shape and category.
For example, when changing the category of boat to airplane, the
predicted scene layout contains the sea for the boat shape, and the
sky for the airplane category.

4.8 Image Synthesis

Layout-based Image Synthesis. We conduct experiments by
using our model for image synthesis. Several recent promising
works [33], [39], [52] on image synthesis have attempted to
generate realistic images from scene layouts. While being able to
synthesize stunning results, they all need a complete scene layout
to start with. The ability of our model to infer scene context
from only standalone foreground objects makes it possible to
hallucinate a full scene image with just a partial semantic layout.

For this task, we leverage the state-of-art image synthesis
method [52], which transforms a semantic layout into a realistic
image. The image segments are extracted from our training dataset
to generate the memory bank for image synthesis. Given a partial
scene layout, we first use our model to predict a full scene layout,
which is then fed into the image synthesis method [52] to produce
an output image.

Sketch-based Image Synthesis. In addition to using a partial
semantic layout as input, we also experiment with using a sketch
as an input to our model for image synthesis. To do this, we
first need to convert a sketch into a partial layout required by our
model. In particular, given the images and their semantic layouts in
our training dataset, we apply an edge detection step [53] to obtain

Input

Ours

Fig. 8: Qualitative results of our model by changing the category
of an input object to an unusual one while keeping the shape fixed.

Method | Accuracy
Chance 0.5%
ImageNet-CNN [55] 38.9%
Places-CNN [56] 49.8%
Ours + SVM 39.8%
Ours + Random Init 37.6%
Ours + Finetune 52.4%

TABLE 4: Accuracy of outdoor scene recognition on the SUN
dataset [57]. We evaluate the representation learned by our layout
discriminator for scene recognition. We compare the performance
of directly using the learned representation with a SVM (Ours +
SVM), randomly initializing the discriminator (Ours + Random
Init) and fine-tuning the discriminator (Ours + Finetune). We
also show the results from ImageNet-CNN and Places-CNN for
a comparison.

the sketches of randomly chosen foreground objects, followed
by some post-processing steps as in [54], including binarization,
thinning, small component removal, erosion and spur removal.
After that, we train a pix2pix network [8] to map the sketches to
partial layouts. During the testing stage, given an input sketch, we
first map it to a partial layout, and then transform it to a full scene
image with the above image synthesis process.

Figure 9 shows some image synthesis results generated from
partial semantic layouts and sketches. As can be seen, our method
can synthesize complex and semantically meaningful full scene
images from sparse user inputs.

4.9 Scene Recognition

We also test the representation learned by the layout discriminator
for outdoor scene recognition [58] on the SUN dataset [57]. Note
that we use the 220 outdoor scene categories in the dataset for
evaluation since our model is only trained on outdoor scenes.

To do this, we first replace the output layer of our discriminator
with a K-way softmax layer. We then construct a scene recognition
model by using a pre-trained semantic segmentation model [59] to
map an input color image to a scene layout, which is then fed into
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a realistic full scene image.

Method Accuracy
Out-of-context [18] 72.9%
pix2pix [8] 55.3%
pix2pixHD [33] 57.8%
SPADE [45] 61.4%
BicycleGAN [46] 55.9%
Ours 73.1%

TABLE 5: Accuracy of fake scene detection.

our discriminator for classification. We fine-tune our discriminator
using the training splits of the SUN dataset (Ours + Finetune). We
also experiment with randomly initializing the discriminator of our
recognition model (Ours + Random Init) instead of using learned
weights of our discriminator, and directly using the outputs of the
penultimate layer of the discriminator as features for a multi-class
SVM (Ours + SVM). Note that since we are interested in exploring
the representation of our discriminator, we fix the weights of the
semantic segmentation model during the experiment.

We report the recognition accuracy in Table 4. SVM using our
learned representation as features slightly outperforms AlexNet
pre-trained on ImageNet [55], but is inferior to the pre-trained
Places-CNN [56] which is designed for scene recognition. In
addition, while our randomly initialized model performs worse
than ImageNet-CNN and Places-CNN, the model initialized from
the weights of our learned discriminator (Ours + Finetune) obtains
better performance. This is possibly because in order to dis-
criminate between real and fake scene layouts, our discriminator
needs to learn a representation that captures complex semantic
and spatial relationships among the objects in a scene layout,
which is important to excellent scene recognition performance.
These results suggest that learning to hallucinate object-level scene
context helps learn useful features for scene recognition.

4.10 Fake Scene Detection

In this application, we are interested in detecting fake scene
images with unusual objects that violate contextual relation-
ships [18], [60], [61]. It is challenging because contextual vio-
lations can be detected only if the relationships among the objects
are carefully and precisely modeled.

To do so, we need to identify if the contextual relationship
among the objects in a scene is plausible or not. Since our layout
discriminator can tell if an input scene layout is real or not, we use
the output of the layout discriminator for this task. In particular,

for each input scene image, we first use a pre-trained semantic
segmentation model [59] to obtain its scene layout. We then feed
the scene layout to our discriminator to classify it as real or fake.

We use 100 fake scene images from the out-of-context dataset
introduced in [62] and another 100 real scene images from our test
dataset for evaluation. We report the detection accuracy in Table 5.
We compare our method with a fake scene detection method [18].
We also use the layout discriminators from other baselines, includ-
ing pix2pix [8], pix2pixHD [33], SPADE [45], and BicycleGAN
[46], for comparison. The out-of-context model [18] not only
detects a fake scene, but also predicts which object violates the
whole scene context by using a tree-structured graphical model.
Our model implicitly learns the semantics necessary for recogniz-
ing scene layout plausibility, and achieves a better performance
to [18], even though it is only trained on a small dataset without
ground truth labels of interest. In addition, we can see that our
layout discriminator outperforms those of the other baselines by a
large margin. This demonstrate that our layout discriminator can
learn more discriminative and semantically richer features than
those of the baselines, possibly because our generator is more
effective in synthesizing high quality and realistic layouts, which
in turn causes a stronger discriminator to emerge.

4.11

We further look into the hidden units of the layout encoder and
the layout discriminator to probe what semantics that has been
learned by our model. We follow [63] to visualize layouts and
parts of them that maximally activate specific hidden units in our
networks. For the encoder, we feed object layouts into it and show
input regions that most strongly activate a particular hidden unit in
the last convolutional layer. For the layout discriminator, we feed
the full scene layout into it and visualize its hidden units from the
last layer (just before the output layer) in the same way.

The first row of Figure 10 shows the results of the encoder.
We can see that some hidden units emerge to detect high-level
objects (e.g., airplane and boat). The units strongly respond to
some important object boundary segments, e.g., the nose and wing
of the airplane in the left group of examples and the bottom of the
boat in the right group of examples. These segments are indicative
of object shapes and poses, which are important cues for reasoning
the surrounding context of the objects. For example, a boat should

Feature Visualization
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g. 10: Hidden unit visualization of the encoder (first row) and layout discriminator (second row). Top: for a specific hidden unit of
the encoder, we show four object layouts and the regions of them that maximally activate it. Bottom: for a specific hidden unit of the
layout discriminator, we show four scene layouts and the regions of them that maximally activate it.
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